One objective of tissue engineering is to support tissue regeneration using biomaterials that replace the damaged area, such as polylactic acid (PLA), sodium alginate (SA), and hydroxyapatite (HA). Therefore, determining the hemocompatibility of composite structures made from these materials is vital to rule out the possible blood trauma that such structures may cause. This work evaluates the percentage of hemolysis in porous PLA-SA-HA scaffolds with clavicle morphology made with different printing parameters (200, 400, 600, and 800 Voronoi tessellations) using additive manufacturing technology. These materials were characterized with infrared Fourier transform spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM-EDX) techniques. The FTIR analysis showed the main functional groups of the materials that make up the composite material, i.e. hydroxyapatite. The SEM micrographs showed a topology that mimics the trabecular sections of human bone tissue. The presence of the hydroxyapatite phase was confirmed by XRD. The hemolysis test was significant (p < 0.0126) and indicated that the material of 200 tessellations had a lower percentage of hemolysis (3.29%), if compared to the other materials (p < 0.05), thus suggesting that said composite has a greater potential for tissue engineering applications of bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.