Ten cadaveric specimens underwent biomechanical assessment on a motorized jig with an in-built torque sensor. A differential variable reluctance transducer was placed on the central bundle of the interosseous membrane to detect changes in strain. Torque was measured with an intact interosseous membrane and a sectioned central bundle of the interosseous membrane. Changes in strain and torque were plotted against the degree of rotation of the cadaveric forearms. We found that the overall magnitude of strain to be greatest in pronation and smallest in supination. However, the relative displacement of the interosseous membrane between pronation and supination was minimal in absolute terms. There was no difference in torque between an intact and cut central bundle. We conclude that the interosseous membrane acts as a static longitudinal stabilizer of the forearm and less so as a rotational stabilizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.