In this paper, we carried out a modular approach human 3D face recognition across neutral and six basic facial expressions experiments. Initially, a face model is decomposed into several modules before the 3D facial points for each of the modules are extracted. Three sizes of modules are used in our experiments: 2-Module, 6-Module and 10-Module. We apply Support Vector Machines as the classifier to each of the modules. A Majority Voting Scheme (MVS) and Weighted Voting Scheme (WVS) are constructed to infer the emotion underlying a collection of modules. From the analysis, we conclude that 10-Module outperforms 2-Module and 6-Module. In addition, the modules with low amount feature vectors and only contain boundary feature vectors perform worst.
-We present a novel method for measuring task performance using gaze regions, i.e., scene regions fixated by a subject as he or she performs a familiar manual task. The scene regions are learned as a bag of features representation, using library lookup based on the Histogram of Oriented Gradients feature descriptor [1]. By establishing a set of task-specific exemplar models, i.e., models sourced from Pareto optimal sequences, the approach recognizes the local optima within a set of task-specific unlabeled models by estimating the distance (of each unlabeled model) to the exemplar models. During testing, the method is evaluated against a dataset of egocentric sequences, each containing gaze data, belonging to three manual skill-based activities. The results show perfect classification's accuracy on several proposed schemes.
Decorative plaited mat is one of the many examples of rich plait work often seen on Borneo handicraft products. The plaited mats are decorated with simple and complex motif designs; each has its own special meaning and taboos. The motif designs are used as a reflection of environment and the traditional beliefs in the Iban community. In line with efforts from UNESCO’s and Sarawak Government’s, digitization, and the use of IR4.0 technologies to preserve and promote this cultural heritage is encouraged. Towards this end goal, we present a novel image dataset containing 10 Iban plaited mat motif classes. The plaited mat motifs are made of diagonal and symmetrical shapes, as well as geometric and non-geometric patterns. Classification’s accuracy using scale-invariant feature transform (SIFT) features was evaluated against 6 common image deformations: zoom+rotation, viewpoint, image blur, JPEG compression, scale and illumination, across multiple threshold values. Varying degrees of each deformation were applied to a digitally cleaned (and cropped) image of each mat motif class. We used RANSAC to remove outliers from the noisy SIFT matching result. The optimal threshold value is 2.0e-2 with a reported 100.0% matching accuracy for the scale change and zoom+rotation set.
Abstract-Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90% to 100% precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.