Infection with phage T2 can overcome the thymine requirement of a mutant of Escherichia coli.' Specifically, infection induces a thymidylate synthetase that is
The RecA protein has a second, direct role in the mutagenesis of Escherichia coli and bacteriophage lambda in addition to its first, indirect role of inducing the SOS system by enhancing the proteolytic cleavage of the LexA repressor protein. The need for RecA protease and recombinase functions in the direct role was examined in cells containing split-phenotype RecA mutations, in the absence of LexA protein. Spontaneous mutation of E. coli (his -> his') required both the protease and recombinase activities. The mutation frequency increased with increasing RecA protease strength. In contrast, UV-induced mutation of E. coli required only the RecA protease activity. Weigle repair and mutation of UV-irradiated phage S13 required only RecA protease activity, and even weak activity was highly effective; RecA recombinase activity was not required. RecA+ protein inhibited RecA (PC [protease constitutive] Rec+) protein in effecting spontaneous mutation of E. coli. We discuss the nature of the direct role of the RecA protein in spontaneous mutation and in repair and mutagenesis of UV-damaged DNA and also the implications of our results for the theory that SOS-mutable cryptic lesions might be responsible for the enhanced spontaneous mutation in Prtc Rec+ strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.