A limited number of antibiotics can be used against Helicobacter pylori infection, and resistance jeopardizes the success of treatment. Therefore, a search for new agents is warranted. The use of probiotics to enhance gastrointestinal health has been proposed for many years, but the scientific basis of the prophylactic and therapeutic actions of probiotics has not yet been clearly delineated. Probiotic strain Bacillus subtilis 3, whose safety has previously been demonstrated, is known to have antagonistic properties against species of the family Enterobacteriaceae. In the present study, it was also found to inhibit H. pylori. The anti-H. pylori activity present in the cell-free supernatant was not related to pH or organic acid concentration. It was heat stable and protease insensitive. At least two antibiotics, detected by thin-layer chromatography (R f values, 0.47 and 0.85, respectively) and confirmed by high-performance liquid chromatographic analysis, were found to be responsible for this anti-H. pylori activity. All H. pylori strains tested were sensitive to both compounds. One of these compounds was identified as amicoumacin A, an antibiotic with anti-inflammatory properties. MICs for H. pylori determined in solid and liquid media ranged between 1.7 and 6.8 g/ml and 0.75 and 2.5 g/ml, respectively. The underestimation of MICs determined in solid medium may be due to physicochemical instability of the antibiotic under these test conditions. An additive effect between amicoumacin A and the nonamicoumacin antibiotic against H. pylori was demonstrated.
Probiotics based on Bacillus strains have been increasingly proposed for prophylactic and therapeutic use against several gastro-intestinal diseases. We studied safety for two Bacillus strains included in a popular East European probiotic. Bacillus subtilis strain that was sensitive to all antibiotics listed by the European Food Safety Authority. Bacillus licheniformis strain was resistant to chloramphenicol and clindamycin. Both were non-hemolytic and did not produce Hbl or Nhe enterotoxins. No bceT and cytK toxin genes were found. Study of acute toxicity in BALB/c mice demonstrated no treatment-related deaths. The oral LD(50) for both strains was more than 2 x 10(11) CFU. Chronic toxicity studies were performed on mice, rabbits, and pigs and showed no signs of toxicity or histological changes in either organs or tissues. We demonstrated that while certain risks may exist for the B. licheniformis strain considering antibiotic resistance, B. subtilis strain may be considered as non-pathogenic and safe for human consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.