The study proposed a dynamic path planning (DPP) method that combines instance image segmentation and elementary matrix calculations to enable a robot to identify the angular position of entities in its surroundings. The DPP method fuses visual and depth information for scene understanding and path estimation with reduced computation resources. This study designed, developed, and evaluated a deep-learning based companion robot prototype for indoor navigation and obstacle avoidance using an RGB-D camera as the sole input sensor. A simulated environment was employed to evaluate the robot's path-planning ability using visual sensors. The DPP method enables the person-following robot to perform intelligent curve manipulation for safe path planning to avoid objects in the initial trajectory. The approach offers a unique and straightforward technique for scene understanding without the burden of extensive neural network configuration. Its modular architecture and flexibility make it a promising candidate for future development and refinement in this domain. Its effectiveness in collision prevention and path planning has potential implications for various applications, including medical robotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.