This study focused on waste to energy technology that utilized mono- and co-digestion of cow dung (CD), chicken dropping (ChD), and rice husk (RH). The fabricated digesters were assessed for the influence of temperature and pH on biogas production from the materials used. The total aerobic bacteria and fungi counts for the mono- and co-digestion of cow dung with chicken droppings had highest number on day zero (1.5x107cfu/ml, 1.6x105cfu/ml and 1.4x108cfu/ml, 1.2x105, respectively), while the lowest counts were recorded on the 35th day (1.3x101cfu/ml, 1.0x101cfu/ml and 1.1x101cfu/ml, 1.0x101cfu/ml, respectively). The highest count of the acetogenic organisms was 1.8x105cfu/ml on the 18th day whereas no count was observed on the 35th day. Methanogenic bacteria had a count ranging from 1.0x 101 cfu/ml to 3.4x104cfu/ml on the 18th day. pH was within the range of 5.3 – 8.5 in the digesters. Cow dung (100% CD) showed the highest cumulative gas production of 41.65m3 compared with chicken droppings (100% ChD) and rice husk (100% RH) which showed values of 8.91 m3 and 0 m3, respectively, within temperature. Furthermore, the co-digestion of 75% CD + 25% ChD, 50% CD + 50% ChD, 25% CD + 75% ChD, 50% CD + 50% RH, and 50% ChD + 50% RH produced biogas values of 20.1m3, 15.13m3, 7.51m3, 5.1m3, and 2.09m3, respectively, at the same temperature range of 36.2OC - 41.7OC. The assay for nitrogen (N), phosphate (P), potassium (K) and sulphate (S) to find the major plant nutrient from the digestate showed that 100% CD was richer in N (1.8mg/l), P (0.5mg/l), and S (0.5mg/l) than the other biomass types, whereas 50% CD 50% ChD had the highest content of P. The present study suggests that the digestion of cow dung, chicken droppings, and rice husk can be an effective means of waste management, pollution control, and generation of renewable energy (biogas) and fertilizers, thereby further strengthening the role of agriculture in the area of food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.