Computational modelling has made many useful contributions to the field of optical tweezers. One aspect in which it can be applied is the simulation of the dynamics of particles in optical tweezers. This can be useful for systems with many degrees of freedom, and for the simulation of experiments. While modelling of the optical force is a prerequisite for simulation of the motion of particles in optical traps, non-optical forces must also be included; the most important are usually Brownian motion and viscous drag. We discuss some applications and examples of such simulations. We review the theory and practical principles of simulation of optical tweezers, including the choice of method of calculation of optical force, numerical solution of the equations of motion of the particle, and finish with a discussion of a range of open problems.
Over the past decade, optical tweezers (OT) have been increasingly used in neuroscience for studies of molecules and neuronal dynamics, as well as for the study of model organisms as a whole. Compared to other areas of biology, it has taken much longer for OT to become an established tool in neuroscience. This is, in part, due to the complexity of the brain and the inherent difficulties in trapping individual molecules or manipulating cells located deep within biological tissue. Recent advances in OT, as well as parallel developments in imaging and adaptive optics, have significantly extended the capabilities of OT. In this review, we describe how OT became an established tool in neuroscience and we elaborate on possible future directions for the field. Rather than covering all applications of OT to neurons or related proteins and molecules, we focus our discussions on studies that provide crucial information to neuroscience, such as neuron dynamics, growth, and communication, as these studies have revealed meaningful information and provide direction for the field into the future.
We demonstrate how optical tweezers combined with a three-dimensional force detection system and high-speed camera are used to study the swimming force and behavior of trapped micro-organisms. By utilizing position sensitive detection, we measure the motility force of trapped particles, regardless of orientation. This has the advantage of not requiring complex beam shaping or microfluidic controls for aligning trapped particles in a particular orientation, leading to unambiguous measurements of the propulsive force at any time. Correlating the direct force measurements with position data from a high-speed camera enables us to determine changes in the particle’s behavior. We demonstrate our technique by measuring the swimming force and observing distinctions between swimming and tumbling modes of the Escherichia coli (E. coli) strain MC4100. Our method shows promise for application in future studies of trappable but otherwise arbitrary-shaped biological swimmers and other active matter.
It is common to introduce optical tweezers using either geometric optics for large particles or the Rayleigh approximation for very small particles. These approaches are successful at conveying the key ideas behind optical tweezers in their respective regimes. However, they are insufficient for modelling particles of intermediate size and large particles with small features. For this, a full field approach provides greater insight into the mechanisms involved in trapping. The advances in computational capability over the last decade has led to better modelling and understanding of optical tweezers.Problems that were previously difficult to model computationally can now be solved using a variety of methods on modern systems. These advances in computational power allow for full field solutions to be visualised, leading to increased understanding of the fields and behaviour in various scenarios. In this paper we describe the operation of optical tweezers using full field simulations calculated using the finite difference time domain method. We use these simulations to visually illustrate various situations relevant to optical tweezers, from the basic operation of optical tweezers, to engineered particles and evanescent fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.