Abstract. Lithium (Li) isotopes in marine carbonates have considerable potential as a proxy to constrain past changes in silicate weathering fluxes and improve our understanding of Earth’s climate. To date the majority of Li isotope studies on marine carbonates have focussed on calcium carbonates. Determination of the Li isotope fractionation between dolomite and a dolomitizing fluid, would allow us to extend investigations to deep times (i.e., Precambrian) when dolostones were the most abundant marine carbonate archives. Dolostones often contain a significant proportion of detrital silicate material, which dominates the Li budget, thus pre-treatment needs to be designed so that only the isotope composition of the carbonate-associated Li is measured. This study aims to serve two main goals: (1) determining the Li isotope fractionation between Ca-Mg carbonates and solution and (2) to develop a method for leaching the carbonate-associated Li out of dolostone while not affecting that contained within the detrital portion of the rock. We synthesized Ca-Mg carbonates at high temperature (150 to 220 °C) and measured the Li isotope composition (δ7Li) of precipitated solids and their respective reactive solutions. The relationship of the Li isotope fractionation factor with temperature was obtained: 103lnαprec-sol = −(2.56 ± 0.27) × 106T2 + (5.8 ± 1.3) Competitive nucleation and growth between dolomite and magnesite were observed during the experiments, however, without notable effect of their relative proportion on the apparent Li isotope fractionation. We found that Li isotope fractionation between precipitated solid and solution is much greater for Ca-Mg carbonates than for Ca carbonates. If the seawater temperature can be estimated independently, the above equation could be used in conjunction with the Li isotope composition of dolostones to derive those of the precipitating solutions and hence make inferrals about the past oceanic Li cycle. In addition, we also conducted leaching experiments on a Neoproterozoic dolostone and a Holocene coral. Results show that leaching with 0.05M HCl or 0.5 % acetic acid at room temperature for 60 min releases Li from the carbonate fraction without significant contribution of Li from the siliciclastic detrital component. These experimental and analytical developments provide a basis for the use of Li isotopes in dolostones as a palaeo-environmental proxy, which will contribute to further advance our understanding of the evolution of Earth’s surface environments.
Lithium (Li) isotopes in marine carbonates have considerable potential as a proxy to constrain past changes in silicate weathering fluxes and improve our understanding of Earth's climate. To date the majority of Li isotope studies on marine carbonates have focussed on calcium carbonates. The determination of the Li isotope fractionation between dolomite and a dolomitizing fluid would allow us to extend investigations to deep times (i.e. Precambrian) when dolostones were the most abundant marine carbonate archives. Dolostones often contain a significant proportion of detrital silicate material, which dominates the Li budget; thus, pretreatment needs to be designed so that only the isotope composition of the carbonate-associated Li is measured. This study aims to serve two main goals: (1) to determine the Li isotope fractionation between Ca-Mg carbonates and solution, and (2) to develop a method for leaching the carbonateassociated Li out of dolostone while not affecting the Li contained within the detrital portion of the rock. We synthesized Ca-Mg carbonates at high temperatures (150 to 220 • C) and measured the Li isotope composition (δ 7 Li) of the precipitated solids and their respective reactive solutions. The relationship of the Li isotope fractionation factor with temperature was obtained: 10 3 ln α prec-sol = − (2.56 ± 0.27)10 6Competitive nucleation and growth between dolomite and magnesite were observed during the experiments; however, there was no notable effect of their relative proportion on the apparent Li isotope fractionation. We found that Li isotope fractionation between the precipitated solid and solution is higher for Ca-Mg carbonates than for Ca carbonates. If the temperature of a precipitating solution is known or can be estimated independently, the above equation could be used in conjunction with the Li isotope composition of dolostones to derive the composition of the solution and hence make inferences about the past Li cycle. In addition, we also conducted leaching experiments on a Neoproterozoic dolostone and a Holocene coral. Results show that leaching with 0.05 M hydrochloric acid (HCl) or 0.5 % acetic acid (HAc) at room temperature for 60 min releases Li from the carbonate fraction without a significant contribution of Li from the siliciclastic detrital component. These experimental and analytical developments provide a basis for the use of Li isotopes in dolostones as a palaeo-environmental proxy, which will contribute to further advance our understanding of the evolution of Earth's surface environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.