Languages that allow free word order, such as Arabic dialects, are of significant difficulty for neural machine translation (NMT) because of many scarce words and the inefficiency of NMT systems to translate these words. Unknown Word (UNK) tokens represent the out-of-vocabulary words for the reason that NMT systems run with vocabulary that has fixed size. Scarce words are encoded completely as sequences of subword pieces employing the Word-Piece Model. This research paper introduces the first Transformer-based neural machine translation model for Arabic vernaculars that employs subword units. The proposed solution is based on the Transformer model that has been presented lately. The use of subword units and shared vocabulary within the Arabic dialect (the source language) and modern standard Arabic (the target language) enhances the behavior of the multi-head attention sublayers for the encoder by obtaining the overall dependencies between words of input sentence for Arabic vernacular. Experiments are carried out from Levantine Arabic vernacular (LEV) to modern standard Arabic (MSA) and Maghrebi Arabic vernacular (MAG) to MSA, Gulf–MSA, Nile–MSA, Iraqi Arabic (IRQ) to MSA translation tasks. Extensive experiments confirm that the suggested model adequately addresses the unknown word issue and boosts the quality of translation from Arabic vernaculars to Modern standard Arabic (MSA).
Self-attention-based encoder-decoder frameworks have drawn increasing attention in recent years. The self-attention mechanism generates contextual representations by attending to all tokens in the sentence. Despite improvements in performance, recent research argues that the self-attention mechanism tends to concentrate more on the global context with less emphasis on the contextual information available within the local neighbourhood of tokens. This work presents the Dual Contextual (DC) module, an extension of the conventional self-attention unit, to effectively leverage both the local and global contextual information. The goal is to further improve the sentence representation ability of the encoder and decoder subnetworks, thus enhancing the overall performance of the translation model. Experimental results on WMT’14 English-German (En$$\rightarrow $$
→
De) and eight IWSLT translation tasks show that the DC module can further improve the translation performance of the Transformer model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.