Synthetic jets are created by periodically ejecting and injecting fluid from an orifice or channel. Despite delivering no net mass flow per cycle, a synthetic jet delivers flow with net positive momentum. Small, compact synthetic jet actuators can be fabricated to operate in the subaudible acoustic range and can be packaged in orientations that allow them to deliver cooling air flow to electronic devices. The most promising orientation is one that delivers the jet flow in a direction normal to the heated surface such that it impinges on the surface as a periodic jet. In previous studies, numerical simulations have been performed by the authors, utilizing a canonical geometry, with the purpose of eliminating actuator artifacts from the fundamental physics that drive the problem. The present paper reports on laboratory experiments that have been performed in order to nearly replicate the idealized synthetic jet geometry and thus allow comparison to the previous numerical investigations. The periodic volume change in an upstream plenum required to produce the synthetic jet is accomplished with an acoustic speaker operated at low frequencies. The amplitude and the frequency at which the jet is actuated determine the Reynolds and Strouhal numbers, which are the dominant non-dimensional groups that control the behavior of the impinging synthetic jet. By maintaining the Re and the St in the laboratory experiments to match those of the small scale actuators, the laboratory experiments have been geometrically scaled up to allow highly resolved measurements of the unsteady velocity field and the local time-dependent Nusselt number on the target heated surface. Experiments were performed at variable jet Re, frequencies, and height from the target surface. The dependence of the surface averaged Nu to jet parameters generally agrees with the computational results. However, discrepancies found between numerical and empirical local data are under revision.
Data centers consume an extraordinary amount of electricity, and the rate of consumption is increasing at a rapid pace. Thus, energy efficiency in data center design is of substantial interest since it can have a significant impact on operating costs. The server cooling infrastructure is one area which is ripe for design innovation. Various designs have been considered for air-cooled data centers, and there is growing interest in liquid-cooled server designs. One potential liquid-cooled solution, which reduces the cost of cooling to less than 5% of the information technology (IT) energy use, is a chiller-less or warm water-cooled system, which removes the chiller from the design and lets the cooling water supply vary with changes in the outdoor ambient conditions. While this design has been proven to work effectively in some locations, environmental extremes prevent its more widespread implementation. In this paper, the design and analysis of a cold water storage system are shown to extend the applicability of chiller-less designs to a wider variety of environmental conditions. This can lead to both energy and economic savings for a wide variety of data center installations. A numerical model of a water storage system is developed, validated, and used to analyze the impact of a water storage tank system in a chiller-less data center design featuring outdoor wet cooling. The results show that during times of high wet bulb operating conditions, a water storage tank can be an effective method to significantly reduce chip operating temperatures for warm water-cooled systems by reducing operating temperatures 5–7 °C during the hottest part of the day. The overall system performance was evaluated using both an exergy analysis and a modified power usage effectiveness (PUE) metric defined for the water storage system. This unique situation also necessitates the development of a new exergy definition in order to properly capture the physics of the situation. The impacts of tank size, tank aspect ratio, fill percentage, and charging/discharging time on both the chip temperature and modified PUE are evaluated. It is determined that tank charging time must be carefully matched to environmental conditions in order to optimize impact. Interestingly, the water being stored is initially above ambient, but the overall system performance improves with lower water temperatures. Therefore, heat losses to ambient are found to beneficial to the overall system performance. The results of this analysis demonstrate that in application, data center operators will see a clear performance benefit if water storage systems are used in conjunction with warm water cooling. This application can be extended to data center failure scenarios and could also lead to downsizing of equipment and a clear economic benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.