These findings confirm the existence of early-stage visual processing dysfunction in schizophrenia and provide the first evidence that such deficits are due to decreased nonlinear signal amplification, consistent with glutamatergic theories. Neuroimaging studies support the hypothesis of dysfunction within low-level visual pathways involving thalamocortical radiations. Deficits in early-stage visual processing significantly predict higher cognitive deficits.
These findings suggest a dysfunction of lower-level visual pathways, which was more prominent for magnocellular than parvocellular biased stimuli. The magnocellular pathway helps in orienting toward salient stimuli. A magnocellular pathway deficit could contribute to higher-level visual cognitive deficits in schizophrenia.
Individuals with schizophrenia show magnocellular visual pathway abnormalities similar to those described in dyslexia, predicting that reading disturbance should be a common concomitant of schizophrenia. To date, however, reading deficits have not been well established, and, in fact, reading is often thought to be normal in schizophrenia based upon results of tests such as the WRAT, which evaluate single word reading. This study evaluated "real world" reading ability in schizophrenia, relative to functioning of the magnocellular visual pathway. Standardized psychoeducational reading tests and contrast sensitivity measures were administered to 19 patients and 10 controls. Analyses of between group differences were further refined by classification of participants into reading vs. nonreading impaired groups using a priori and derived theoretical models. Patients with schizophrenia, as a group, showed highly significant impairments in reading (p<0.04-p<0.001), with particular deficits on tests of rate, comprehension and phonological awareness. Between 21% and 63% of patients met criteria for dyslexia depending upon diagnostic model vs. 0-20% of the controls. The degree of deficit correlated significantly with independent measures of magnocellular dysfunction. Reading impairment in schizophrenia reaches the level of dyslexia and is associated with compromised magnocellular processing as hypothesized. Findings related to symptoms, functioning and recommendations for reading ability assessment are discussed.
Objective-Patients with schizophrenia demonstrate significant impairments of early visual processing, potentially implicating dysfunction of the magnocellular visual pathway. The present study evaluates transient visual evoked potential (tVEP) responses to stimuli biased toward the magnocellular (M) or parvocellular (P) systems in patients with schizophrenia vs. normal volunteers first to evaluate relative contributions of M and P systems to specific tVEP components in schizophrenia and, second, to evaluate integrity of early M and P processing in schizophrenia.Methods-Seventy-four patients with schizophrenia and schizoaffective disorder were compared with 59 control subjects using separate stimuli to assess the tVEP response to M, P and mixed M/P conditions. Stimuli were biased toward M vs. P processing by manipulation of chromatic and achromatic contrast. C1, P1, N1 and P2 components were compared between patients and controls. All subjects showed 20/32 vision or better.Results-Waveforms were obtained to low contrast (M), chromatic contrast (P) and high contrast (mixed M/P) stimuli in both patients and controls. C1 was present to P and mixed M/P stimuli. Patients showed a significant reduction in amplitude and an increase in latency of the C1 component. P1 was elicited primarily by M and mixed M/P stimuli, whereas N1 was elicited primarily by P and mixed M/P stimuli. Patients showed reductions in both P1 and N1 amplitudes across conditions. However, only reductions in P1 amplitude survived covariation for between group differences in visual acuity. Further, P1 amplitude reductions in the M condition correlated with a proxy measure of global outcome.Conclusions-M-and P-selective stimuli elicit differential components of the tVEP. Patients with schizophrenia show significant reductions in response even to simple visual stimuli. Deficits, particularly within the M system, may correlate significantly with global outcome and level of community functioning.Significance-Whereas deficits in high-order cognitive processing have been extensively documented in schizophrenia, integrity of early-stage sensory processing has been studied to a lesser degree. The present findings suggest that deficits in early-stage visual processing are significantly
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.