Motivation Reconstructing high-quality haplotype-resolved assemblies for related individuals has important applications in Mendelian diseases and population genomics. Through major genomics sequencing efforts such as the Personal Genome Project, the Vertebrate Genome Project (VGP) and the Genome in a Bottle project (GIAB), a variety of sequencing datasets from trios of diploid genomes are becoming available. Current trio assembly approaches are not designed to incorporate long- and short-read data from mother–father–child trios, and therefore require relatively high coverages of costly long-read data to produce high-quality assemblies. Thus, building a trio-aware assembler capable of producing accurate and chromosomal-scale diploid genomes of all individuals in a pedigree, while being cost-effective in terms of sequencing costs, is a pressing need of the genomics community. Results We present a novel pedigree sequence graph based approach to diploid assembly using accurate Illumina data and long-read Pacific Biosciences (PacBio) data from all related individuals, thereby generalizing our previous work on single individuals. We demonstrate the effectiveness of our pedigree approach on a simulated trio of pseudo-diploid yeast genomes with different heterozygosity rates, and real data from human chromosome. We show that we require as little as 30× coverage Illumina data and 15× PacBio data from each individual in a trio to generate chromosomal-scale phased assemblies. Additionally, we show that we can detect and phase variants from generated phased assemblies. Availability and implementation https://github.com/shilpagarg/WHdenovo.
Structural similarity is a growing focus for magnetic resonance imaging (MRI) of connectomes. Here we propose Morphometric INverse Divergence (MIND), a new method to estimate within-subject similarity between cortical areas based on the divergence between their multivariate distributions of multiple MRI features. Compared to the prior approach of morphometric similarity networks (MSNs) on n > 11,000 scans spanning three human datasets and one macaque dataset, MIND networks were more reliable, more consistent with cortical cytoarchitectonics and symmetry and more correlated with tract-tracing measures of axonal connectivity. MIND networks derived from human T1-weighted MRI were more sensitive to age-related changes than MSNs or networks derived by tractography of diffusion-weighted MRI. Gene co-expression between cortical areas was more strongly coupled to MIND networks than to MSNs or tractography. MIND network phenotypes were also more heritable, especially edges between structurally differentiated areas. MIND network analysis provides a biologically validated lens for cortical connectomics using readily available MRI data.
Structural similarity networks are a central focus of magnetic resonance imaging (MRI) research into human brain connectomes in health and disease. We present Morphometric INverse Divergence (MIND), a robust method to estimate within-subject structural similarity between cortical areas based on the Kullback-Leibler divergence between the multivariate distributions of their structural features. Compared to the prior approach of morphometric similarity networks (MSNs) on N>10,000 data from the ABCD cohort, MIND networks were more consistent with known cortical symmetry, cytoarchitecture, and (in N=19 macaques) gold-standard tract-tracing connectivity, and were more invariant to cortical parcellation. Importantly, MIND networks were remarkably coupled with cortical gene co-expression, providing fresh evidence for the unified architecture of brain structure and transcription. Using kinship (N=1282) and genetic data (N=4085), we characterized the heritability of MIND phenotypes, identifying stronger genetic influence on the relationship between structurally divergent regions compared to structurally similar regions. Overall, MIND presents a biologically-validated lens for analyzing the structural organization of the cortex using readily-available MRI measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.