Bladder cancer (BC) is a common cancer but diagnostic modalities, such as cystoscopy and urinary cytology, have limitations. Here, high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) was used to profile urine metabolites of 138 patients with BC and 121 control subjects (69 healthy people and 52 patients with hematuria due to non-malignant diseases). Multivariate statistical analysis revealed that the cancer group could be clearly distinguished from the control groups on the basis of their metabolomic profiles, even when the hematuric control group was included. Patients with muscle-invasive BC could also be distinguished from patients with non-muscle-invasive BC on the basis of their metabolomic profiles. Successive analyses identified 12 differential metabolites that contributed to the distinction between the BC and control groups, and many of them turned out to be involved in glycolysis and betaoxidation. The association of these metabolites with cancer was corroborated by microarray results showing that carnitine transferase and pyruvate dehydrogenase complex expressions are significantly altered in cancer groups. In terms of clinical applicability, the differentiation model diagnosed BC with a sensitivity and specificity of 91.3% and 92.5%, respectively, and comparable results were obtained by receiver operating characteristic analysis (AUC = 0.937). Multivariate regression also suggested that the metabolomic profile correlates with cancer-specific survival time. The excellent performance and simplicity of this metabolomics-based approach suggests that it has the potential to augment or even replace the current modalities for BC diagnosis.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily and signal through a number of membrane receptors. We have previously demonstrated that the loss of expression of BMP receptors (BMPRs) type IA, -IB, and -II (BMP-RIA, -RIB, and -RII) correlates with Gleason score in prostate cancer patients. To evaluate the prognostic value of this observation, we used immunohistochemistry to investigate the expression of BMPRs in association with disease progression in 60 patients. The results demonstrated a significant association between the loss of expression of the three BMPRs and Gleason score and clinical stage. However, only the loss of expression of BMP-RII showed a statistically significant association with 5-year survival rate (P<0.05) and biochemical recurrence-free rate following radical prostatectomy (P<0.005). To elucidate the effect of an abnormal BMP signaling in prostate cancer cells, we transfected dominant-negative BMP-RII (BMP-RIIDN) into the human prostate cancer cell line, PC3M. When a stable clone overexpressing BMP-RIIDN was inoculated subcutaneously into nude mice, the tumor growth rate was approximately 10 times that of control and parental cell line. These observations, taken together, indicate that the loss of BMP-RII expression as measured by immunohistochemistry may be a prognostic marker in prostate cancer patients, and that the loss of BMP-RII function may result in increased tumorigenicity in human prostate cancer cells.
Selective estrogen receptor modulator is a proven agent for chemoprevention and chemotherapy of cancer. Raloxifene, a mixed estrogen agonist/antagonist, was developed to prevent osteoporosis and potentially reduce the risk of breast cancer. In this study, we examined the effect of raloxifene on the TSU-PR1 cell line. This cell line was originally reported to be a prostate cancer cell line, but recently it has been shown to be a human bladder transitional cell carcinoma cell line. The TSU-PR1 cell line contains high levels of estrogen receptor . Following treatment with raloxifene, evidence of apoptosis, including change in nuclear morphology, DNA fragmentation, and cytochrome c release, was observed in a dose-dependent manner in the TSU-PR1 cells (10 ؊9 to 10 ؊6 M range). We observed no detectable change in the steady-state levels of Bax, Bcl-2, and Bcl-X L following raloxifene treatment. However, raloxifene induced caspase-dependent cleavage of BAD to generate a 15-kDa truncated protein. Overexpression of a double mutant BAD resistant to caspase 3 cleavage blocked raloxifene-induced apoptosis. These results demonstrate that raloxifene induces apoptosis through the cleavage of BAD in TSU-PR1 cells. This molecular mechanism of apoptosis suggests that raloxifene may be a therapeutic agent for human bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.