Microsporidia are ubiquitous opportunistic parasites in nature infecting all animal phyla, and the zoonotic potential of this parasitosis is under discussion. Fecal samples from 124 pigeons from seven parks of Murcia (Spain) were analyzed. Thirty-six of them (29.0%) showed structures compatible with microsporidia spores by staining methods. The DNA isolated from 26 fecal samples (20.9%) of microsporidia-positive pigeons was amplified with specific primers for the four most frequent human microsporidia. Twelve pigeons were positive for only Enterocytozoon bieneusi (9.7%), 5 for Encephalitozoon intestinalis (4%), and one for Encephalitozoon hellem (0.8%). Coinfections were detected in eight additional pigeons: E. bieneusi and E. hellem were detected in six animals (4.8%); E. bieneusi was associated with E. intestinalis in one case (0.8%); and E. hellem and E. intestinalis coexisted in one pigeon. No positive samples for Encephalitozoon cuniculi were detected. The internally transcribed spacer genotype could be completed for one E. hellem-positive pigeon; the result was identical to the genotype A1 previously characterized in an E. hellem Spanish strain of human origin. To our knowledge, this is the first time that human-related microsporidia have been identified in urban park pigeons. Moreover, we can conclude that there is no barrier to microsporidia transmission between park pigeons and humans for E. intestinalis and E. hellem. This study is of environmental and sanitary interest, because children and elderly people constitute the main visitors of parks and they are populations at risk for microsporidiosis. It should also contribute to the better design of appropriate prophylactic measures for populations at risk for opportunistic infections.Microsporidia are intracellular obligate parasites mainly considered as opportunistic pathogens (58), ubiquitous in nature, infecting all animal phyla (6, 59). Although initially associated with AIDS patients, they are being detected in increasing numbers in immunocompetent patients and thus are gaining attention as emerging pathogens (25,33,35,53,56). The phylum Microsporidia contains over 144 genera and 1,200 species (59). The number of genera implicated in human microsporidiosis has increased at the same rate as the improvements in diagnostic techniques, and the interest in this group of parasites has grown accordingly. To date, eight genera are recognized as human pathogens: Nosema, Vittaforma, Pleistophora, Encephalitozoon, Enterocytozoon, Brachiola, Trachipleistophora, and Microsporidium. Among these, Enterocytozoon bieneusi is the species of microsporidia that most frequently causes infection in humans, followed by Encephalitozoon intestinalis, Encephalitozoon hellem, and Encephalitozoon cuniculi.
We have identified a polypeptide that was already known to interact with polyglutamine-tract-binding protein (PQBP)-1/Npw38 as a novel splicing factor and interactor of protein phosphatase-1, hence the name SIPP1 for splicing factor that interacts with PQBP-1 and PP1 (protein phosphotase 1). SIPP1 was inhibitory to PP1, and its inhibitory potency was increased by phosphorylation with protein kinase CK1. Two-hybrid and co-sedimentation analysis revealed that SIPP1 has two distinct PP1-binding domains and that the binding of SIPP1 with PP1 involves a RVXF (Arg-Val-Xaa-Phe) motif, which functions as a PP1-binding sequence in most interactors of PP1. Enhanced-green-fluorescent-protein-tagged SIPP1 was targeted exclusively to the nucleus and was enriched in the nuclear speckles, which represent storage/assembly sites of splicing factors. We have mapped a nuclear localization signal in the N-terminus of SIPP1, while the proline-rich C-terminal domain appeared to be required for its subnuclear targeting to the speckles. Finally, we found that SIPP1 is also a component of the spliceosomes and that a SIPP1-fragment inhibits splicing catalysis by nuclear extracts independent of its ability to interact with PP1.
SalI and PstI restriction endonuclease-generated DNA fragments that specify an FII-type incompatibility function (incFII) of the low copy number antibiotic resistance plasmid R6-5 have been cloned in the high copy number pBR322 plasmid vector. A 1-kilobase DNA sequence that contains this incFII determinant has been identified and is shown to have coordinates of 95.5 and 96.5 kilobases on the R6-5 plasmid physical map. Expression of incompatibility by the cloned PstI fragment depends on its orientation within the vector molecule. The behaviour of pBR322-incFII hybrid plasmids suggests that plasmid replication control is not the only mechanism that can cause incompatibility between two plasmids.
The locations of the fertility inhibition genes finO and finP of the F-like conjugative multiple antibioticresistance plasmid R6-5 have been determined. As found previously for that of the fertility plasmid F, the finPgene of R6-5 is located close to the origin of DNA transfer, oMT, and to the promoter-proximal segment of the tra operon. Thus, finP is close to the site of action of the FinOP fertility inhibition system. In contrast, the finO gene is located on the other side of the tra operon, greater than 35 kilobases from the finP gene; finO is very close to the origin of vegetative replication, oriV, and to cistrons encoding functions involved in autonomous plasmid replication and plasmid incompatibility. A 4.5-kilobase fragment of R6-5 DNA containing the finO gene has been cloned on the high-copy amplifiable vector plasmid pBR322. This hybrid plasmid, desigated pKTO31, causes severe repression of conjugal transfer of plasmid F, indicating the production of high cellular levels of finO protein. Two indepndent fino mutant derivatives were obtained after mutagenesis of the pKTO3l plasmid. Comparison of proteins synthesized by minicells carrying finO mutant plasmids with those carrying various finO+ plasmids enables the finO gene product to be tentatively identified as a 22,000-dalton protein.
R6-5 is a low copy number, conjugative, FII incompatibility group plasmid that has a molecular length of 102 kb and that specifies resistance against several antibiotics (chloramphenicol, fusidic acid, kanamycin, streptomycin and sulphonamide) and mercury salts. By means of in vitro cloning procedures, mini plasmids have been generated that contain a DNA segment from the essential region of R6-5 that is only 2.6 kb in length. This DNA segment, which consists of two PstI fragments that are adjacent in the parent plasmid, carries all genes and sequences required for the regulated replication and incompatibility properties of R6-5, including its origin of replication, OriV, an essential function that has been designated RepA, and the copy control function, Cop. Three different polypeptides, having monomer molecular weights of 23,000, 10,000 and 9,500 daltons, are synthesized in detectable quantities by minicells carrying pBR322 hybrid plasmids that contain DNA segments from the R6-5 essential region. A spontaneous deletion derivative of a pBR322 hybrid plasmid that carries the R6-5 origin of replication was isolated. Heteroduplex analysis of this derivative plasmid indicates that the deleted DNA segment carries the R6-5 replication origin and that its termini consist of short inverted repeat sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.