The comparative performance of mammographic X-ray systems that use different anode/filter combinations has been assessed for screen-film and digital imaging. Monte Carlo techniques have been used to calculate average glandular dose as well as contrast and signal-to-noise ratio for imaging two test details. Five anode/filter combinations have been studied to establish the potential for dose saving or image quality improvement. For screen-film mammography, it was found that little benefit is gained by changing from a standard 28 kV molybdenum/molybdenum spectrum for breasts up to 6 cm thick. For thicker breasts, where the tube potential for the standard technique might be increased, 20% improvement in contrast can be achieved without dose penalty using molybdenum/rhodium or rhodium/rhodium spectra, whereas dose savings of more than 50% can be attained whilst maintaining contrast using tungsten/rhodium or rhodium/aluminium spectra. In digital mammography, a molybdenum/molybdenum spectrum delivers the lowest dose for a 2 cm breast, but gives the highest dose for thicker breasts. Tungsten/rhodium or rhodium/aluminium spectra provide the lowest doses at greater thicknesses. It is concluded that for screen-film mammography, molybdenum/molybdenum is the spectrum of choice for all but the thickest or most glandular breasts. In digital mammography, an alternative spectrum is preferable for breasts thicker than 2 cm.
DCE MR imaging and DCE CT can depict vascular response to antiangiogenic agents with response evident at day 7. Improved reproducibility with MR imaging favors its use in trials with small patient numbers.
The use of geometrical phantoms for computed tomography (CT) dosimetry can incur errors in the calculation of effective dose due to the anatomically incorrect organ shapes and distributions, and unrepresentative body dimensions. A Monte Carlo program that makes use of an anatomically correct voxel phantom has been developed to calculate effective doses in CT and to compare with conventional dosimetric techniques. The code was validated against the latter by matching the phantom dimensions and simulating whole-body irradiation; agreement to within 6% was found. Effective doses were calculated for brain, lung, abdomen and pelvis CT scans for voxel phantom sizes corresponding to those of standard-sized adult, a teenager and 10% greater than those of standard-sized adult. Errors incurred by using the conventional techniques are minimised if the scan range is set by matching the fractions of radiosensitive organs that are irradiated directly. Under these circumstances, the conventional techniques will underestimate the dose to a 15 y old by up to 22% while the dose to a large subject is overestimated by up to 11%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.