The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.
Bacillus subtilis EA-CB0015 was isolated from the phyllosphere of a banana plant and tested for its potential to produce bioactive compounds against Mycosphaerella fijiensis. Using a dual plate culture technique the cell-free supernatant of B. subtilis EA-CB0015 produced inhibition values of 89 ± 1%. The active compounds were purified by solid-phase extraction and HPLC, and their primary structures determined using mass spectrometry and amino acid analysis. A new fengycin isoform, fengycin C, with the amino acid sequence Glu-Orn-Tyr-Thr-Glu-Val-Pro-Gln-Thr-Ile was isolated. The peptidic moiety differs from fengycin B at position 9 and from fengycin A at positions 6 and 9. The β-hydroxy fatty acyl chain is connected to the N-terminal of the decapeptide and can be saturated or unsaturated, ranging from 14 to 18 carbons. The C-terminal residue of the peptidic moiety is linked to the tyrosine residue at position 3, forming the branching point of the acyl peptide and the eight-membered cyclic lactone.
Mycosphaerella fijiensis is the etiological agent of Black Sigatoka, a fungal disease that affects production of banana and plantain crops in tropical regions. The sizes of cultivable epiphytic and endophytic bacterial populations, aerobic endospore forming bacteria (AEFB), and antagonist bacteria against M. fijiensis isolated from three Musa spp. cultivars from Urabá (Colombia) were studied, in order to find a suitable screening strategy to isolate antagonistic bacteria. Most of the variability found in the epiphytic and endophytic bacterial community sizes among fruit trees was explained by the cultivar differences. We found population sizes ranging from 1.25 × 10(3) to 9.64 × 10(5) CFU/g of fresh leaf and found that 44 % of total cultivable bacteria belong to the AEFB group. We isolated 648 AEFB from three different cultivars and assessed their antagonistic activity against M. fijiensis using the cell-free supernatant obtained from bacterial liquid cultures in three different in vitro assays. Five percent of those bacteria showed higher percent inhibition than the positive control Bacillus subtilis UA321 has (percent inhibition = 84 ± 5) in the screening phase. Therefore, they were selected as antagonistic bacteria against the pathogen. The strains with the highest percentage of antagonism were found in older leaves for the three cultivars, given support to recommend this group of leaves for future samplings. Some of these isolated bacteria affected the mycelium and ascospores morphology of the fungus. They also presented in vitro characteristics related to a successful colonization of the phylloplane such as indolic compounds, surfactant production, and biofilm formation, which makes them possible, potential candidates as biological control agents.
Tel: +41 79 536 7546 12 13 14 2 The unprecedented challenge to feed the rapidly growing human population can only be 15 achieved with major changes in how we combine technology with agronomy 1 . Despite their 16 potential few beneficial microbes have truly been demonstrated to significantly increase 17 productivity of globally important crops in real farming conditions 2,3 . The way microbes are 18 employed has largely ignored the successes of crop breeding where naturally occurring 19 intraspecific variation of plants has been used to increase yields. Doing this with microbes 20 requires establishing a link between variation in the microbes and quantitative traits of crop 21 growth along with a clear demonstration that intraspecific microbial variation can potentially 22 lead to large differences in crop productivity in real farming conditions. Arbuscular mycorrhizal 23 fungi (AMF), form symbioses with globally important crops and show great potential to improve 24 crop yields 2 . Here we demonstrate the first link between patterns of genome-wide intraspecific 25 AMF variation and productivity of the globally important food crop cassava. Cassava, one of the 26 most important food security crops, feeds approximately 800 million people daily 4 . In 27 subsequent field trials, inoculation with genetically different isolates of the AMF Rhizophagus 28 irregularis altered cassava root productivity by up to 1.46-fold in conventional cultivation in 29 Colombia. In independent field trials in Colombia, Kenya and Tanzania, clonal sibling progeny 30 of homokaryon and dikaryon parental AMF enormously altered cassava root productivity by up 31 to 3 kg per plant and up to a 3.69-fold productivity difference. Siblings were clonal and, thus, 32 qualitatively genetically identical. Heterokaryon siblings can vary quantitatively but monokaryon 33 siblings are identical. Very large among-AMF sibling effects were observed at each location 34 although which sibling AMF was most effective depended strongly on location and cassava 35 variety. We demonstrate the enormous potential of genetic, and possibly epigenetic variation, in 36 AMF to greatly alter productivity of a globally important crop that should not be ignored. A 37 microbial improvement program to accelerate crop yield increases over that possible by plant 38 breeding or GMO technology alone is feasible. However, such a paradigm shift can only be 39 realised if researchers address how plant genetics and local environments affect mycorrhizal 40 responsiveness of crops to predict which fungal variant will be effective in a given location.41 For millennia farmers have improved crops using naturally occurring intraspecific plant genetic variation 42 to improve productivity. However, rates of yield increase attributed to plant breeding and GMO-crop 43 technology are not considered sufficient to feed the projected global human population 1 . Beneficial soil 65 there was a significant phylogenetic signal on spore density and clustering (Supplementary figure 1; 66Supplementary infor...
Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) is a standardized survey for measuring patients' perception of their hospital experience. It is intended to improve quality of care, allow comparison of hospitals on topics that are important to consumers and enhance accountability in healthcare by increasing transparency of the quality of hospital care. HCAHPS has been a primary focus of our hospital in assessing quality of care at the BMT unit. HCAHPS surveys were mailed to a random sample of BMT patients 48 hours to 4 weeks post discharge from the unit. Surveys returned between May 2012 and September 2012 (group A, n¼25) were reviewed (table 2). HCAHPS scores were below the required target of 75% in all areas. A quality improvement plan (table 1) was implemented to help improve HCAHPS scores and targeted physician communication, nursing communication, pain management and discharge planning.After implementing the HCAHPS improvement plan, 19 patient surveys (group B) were returned from October till April 2013.The satisfaction scores were all above the 90 th percentile reflecting a significant improvement in patient experience.Our Data shows that HCAHPS scores can be significantly improved through a cohesive plan based on close communication between all team members and assessing patient needs on a more frequent basis.We used the Plan-Do-Study-Act (PDSA) quality improvement methodology to decrease the average length of stay (ALOS) and readmission rates within 30 days for bone marrow transplant patients June 1, 2011 through November 15, 2012 was chosen for baseline data (pre-implementation). Changes in workflows, per PDSA methodology, were implemented on November 16, 2012 including: a streamlined admission process, pretransplant education in the outpatient rather than inpatient setting, improved anti-emetic strategy, and a consistent, protocol driven TPN use and taper. We studied the effects to these changes through August 31, 2013 (post-implementation). We also reviewed patient satisfaction surveys during the same intervals. The proportion of autologous to allogeneic transplants preand post-implementation was similar pre-and post-implementation (72% and 75% autologous). The ALOS (95% CI) for autologous transplant patients decreased from 21.03 (19.66 e 22.40; n ¼ 72) to 18.54 days (17.63 e 19.46; n ¼ 59). ALOS for allogeneic patients decreased from 33.63 (29.61 e 37.62; n ¼ 28) to 26.05 (23.56 e 28.55; n ¼ 19). The overall 30-day readmission rate decreased from 6% to 2.56%; autologous from 1.39% to 1.69%, while allogeneic decreased from 17.69% to 5.26%. TPN utilization decreased from 60.00% to 39.74%, and the average number of days on TPN was 11.43 and 8.42, respectively. Overall, the Patient Satisfaction Index (PSI) increased from 90.36% to 93.57%. Improvements were noted in the following domains: pre-BMT education, BMT inpatient care, discharge and teaching materials, and transition to referring physician. Discussion: The implementation of these changes led to a decrease in ALOS, readmissi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.