Our results showed that prenatal exposure to ethanol induced DNA damage in osteoblasts, as shown by micronucleus formation and higher percentage of DNA in the comet tail. It can be concluded that prenatal exposure to ethanol damages osteoblast DNA in newborns exposed to high doses of ethanol during pregnancy, suggesting that prenatal ethanol consumption has a direct effect on fetal osteoblasts.
Previous studies suggest that prenatal alcohol exposure affects fetal bone development, including bone quality. This study evaluated the chemical composition of mandibles from newborn rats after maternal 20% alcohol consumption before and throughout gestation. Nine rats were initially distributed into three groups: an Alcohol group, Pairfed group, and Control group. The groups were fed prespecified diets for 8 weeks before and the 3 weeks during pregnancy. At age 5 days, eight newborns from each group were euthanized (total, n = 24). Using energy dispersive spectrometry, we evaluated samples of mandibles from newborns to identify changes in bone mineralization, specifically Ca and P concentrations. Ca and P concentrations were lower in the Alcohol group than in the Control and Pair-fed groups (P = 0.003 and P = 0.001, respectively). In summary, alcohol exposure before and throughout gestation reduces mandibular Ca and P concentrations in newborn rats. (J Oral Sci 58, 439-444, 2016)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.