Root elongation, hematoxylin staining, and changes in the ultrastructure of root-tip cells of an Al-tolerant maize variety (Zea mays L. C 525 M) exposed to nutrient solutions with 20 M Al (2.1 M Al 3؉ activity) for 0, 4, and 24 h were investigated in relation to the subcellular distribution of Al using scanning transmission electron microscopy and energy-dispersive x-ray microanalysis on samples fixed by different methods. Inhibition of root-elongation rates, hematoxylin staining, cell wall thickening, and disturbance of the distribution of pyroantimoniate-stainable cations, mainly Ca, was observed only after 4 and not after 24 h of exposure to Al. The occurrence of these transient, toxic Al effects on root elongation and in cell walls was accompanied by the presence of solid Al-P deposits in the walls. Whereas no Al was detectable in cell walls after 24 h, an increase of vacuolar Al was observed after 4 h of exposure. After 24 h, a higher amount of electron-dense deposits containing Al and P or Si was observed in the vacuoles. These results indicate that in this tropical maize variety, tolerance mechanisms that cause a change in apoplastic Al must be active. Our data support the hypothesis that in Al-tolerant plants, Al can rapidly cross the plasma membrane; these data clearly contradict the former conclusions that Al mainly accumulates in the apoplast and enters the symplast only after severe cell damage has occurred.It is largely recognized that root tips are the primary site of Al-induced injury in plants (Ryan et al., 1993). The accumulation of Al in root tips has been found to be significantly correlated with root-growth inhibition in maize (Zea mays L.) varieties differing in Al tolerance (Llugany, 1994; Llugany et al., 1994). In Al-sensitive maize plants an inhibition of root elongation has been observed after only 30 min of exposure to Al (Llugany et al., 1995). Such a short response time, in addition to the common belief (Kochian, 1995) that Al accumulates mainly in the apoplast and crosses the plasma membrane slowly, has led to the hypothesis that Al-induced inhibition of root elongation may be caused by toxicity mechanisms that occur in the apoplast (Rengel, 1990(Rengel, , 1996 Horst, 1995) and that there is no need for Al to enter the symplast to cause primary toxicity effects (Rengel, 1992). However, investigations using the highly Al-sensitive technique of secondary ion MS have shown that significant Al concentrations accumulate in the symplast of root-tip cells of soybean plants after only 30 min of exposure to Al (Lazof et al., 1994(Lazof et al., , 1996. Recent experiments on giant algae (Chara corallina) cells, where cell walls were separated from the cells by microsurgery, have also shown that Al uptake across the plasmalemma may be linear and occurs without delay (Rengel and Reid, 1997). These investigations support the view that symplastic phytotoxicity mechanisms may also be responsible for Alinduced inhibition of root elongation after short exposure times (Kochian, 1995).More information...