Craft beers are known for their distinct flavor, brew, and regional distribution. They are made using top-fermenting (ale) yeast, bottom-fermenting (lager) yeast, or through spontaneous fermentation. Craft beers are consumed and produced in Brazil in large quantities. However, they present a high level of polyphenols, which affects consumer preference as they may yield a taste of bitterness to beers. In this study, we analyzed the relationship between polyphenols and bitterness as well as the composition of the main styles of craft beers and consumer preference for them. Six different styles were analyzed according to their polyphenol content, bitterness, chemical composition, sensory profile, and preference. For preference, a panel of 62 untrained assessors was used. For sensory profile, quantitative descriptive analysis was performed using expert assessors (n = 8). The most preferred style was classic American pilsner, and the least preferred was standard American lager. The most preferred style showed less bitterness (9.52) and lower polyphenol content (0.61 mg EAG/mL), total solids (6.75 °Brix), and turbidity (7.27 NTU). This beer also exhibited reduced sensory notes of malty, fruity, smoked, hoppy, and phenolic but a higher perception of floral, sweet, and yeast notes; the bitterness attribute had a reduced perception. This study advances the understanding and complexity of the sensory profile of different styles of craft beers from Southern Brazil.
Producing of extra virgin olive oils (EVOOs) containing pleasant sensory notes depends on fruits quality and production process and is strongly associated with their classification that is based on aroma and sensory taste. Consolidated as an efficient method, the direct headspace solid phase microextraction technique (HS‐SPME) was utilized to characterize the volatile organic compounds (VOCs) profile, which contributes to the aroma of olive oils from southwestern (Serra da Mantiqueira region) and southern (Campanha Gaúcha region) Brazil. In this work, the relationship between the VOCs and sensory characteristics has been established; 19 EVOO samples (12 from Campanha Gaúcha and 7 from Serra da Mantiqueira) were studied. Indeed, the main volatile compounds were analyzed and grouped by their classification as well stood up with the trained sensorial panel perceptions. Relevant correlation between artichoke notes and ripe EVOO and between herbaceous notes and green EVOO was found. Additional correlations were observed for C5 and C6 VOCs with green and fruit/floral notes. The results denote the high quality among the samples and imply that besides the genetic factor, ripe or green classification influenced the volatile composition. Practical Application As the Brazilian olive oil production is increasing, knowing about different sensory characteristics and its correlation with the volatile compounds of extra virgin olive oil represents a good tool to improve the quality. Moreover, the application of direct SPME method was possible evidence in the differentiation of ripe and green olive oils, beyond the production region and in consonance with its sensory notes and characteristics.
Apatamer technology has been around for a quarter of a century and the field had matured enough to start seeing real applications, especially in the medical field. Since their discovery, aptamers rapidly emerged as key players in many fields, such as diagnostics, drug discovery, food science, drug delivery and therapeutics. Because of their synthetic nature, aptamers are evolving at an exponential rate gaining from the newest advances in chemistry, nanotechnology, biology and medicine. This review is meant to give an overview of the aptamer field, by including general aspects of aptamer identification and applications as well as highlighting certain features that contribute to their quick deployment in the biomedical field.
Salmonella is a leading source of bacterial foodborne illness in humans, causing gastroenteritis outbreaks with bacteraemia occurrences that can lead to clinical complications and death. Eggs, poultry and pig products are considered as the main carriers of the pathogenic Salmonella for humans. To prevent this relevant zoonosis, key changes in food safety regulations were undertaken to improve controls in the food production chain. Despite these measures, large outbreaks of salmonellosis were reported worldwide in the last decade. Thus, new strategies for Salmonella detection are a priority for both, food safety and public health authorities. Such detection systems should provide significant reduction in diagnostic time (hours) compared to the currently available methods (days). Herein, we report on the discovery and characterization of nucleic acid probes for the sensitive and specific detection of live Salmonella within less than 8 hours of incubation. We are the first to postulate the nuclease activity derived from Salmonella as biomarker of infection and its utility to develop innovative detection strategies. Our results have shown the screening and identification of two oligonucleotide sequences (substrates) as the most promising probes for detecting Salmonella -Sal-3 and Sal-5. The detection limits for both probes were determined with the reference Salmonella Typhimurium (STM 1) and Salmonella Enteritidis (SE 1) cultures. Sal-3 has reported LOD values around 10 5 CFU mL -1 for STM 1 and 10 4 CFU mL -1 for SE 1, while Sal-5 proves to be a slightly better probe, with LODs of 10 4 CFU mL -1 for STM 1 and 10 4 CFU mL -1 for SE 1. Both selected probes have shown the capability to recognize 49 out of 51 different Salmonella serotypes tested in vitro and the most frequent serotypes in porcine mesenteric lymph nodes as a standard sample used in fattening-pig salmonellosis baseline studies. Notably, our results showed 100% correlation between nuclease detection and the PCR-InvA or ISO-6579 standard method, underlining the great potential of this innovative nucleic acids technology to be implemented as a rapid method for food safety testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.