High-throughput screening facilities do not generally support biosafety level 3 organisms such as Mycobacterium tuberculosis. To discover not only antibacterials, but also virulence inhibitors with either bacterial or host cell targets, an assay monitoring lung fibroblast survival upon infection was developed and optimized for 384-plate format and robotic liquid handling. By using Mycobacterium marinum as surrogate organism, 28,000 compounds were screened at biosafety level 2 classification, resulting in 49 primary hits. Exclusion of substances with unfavourable properties and known antimicrobials resulted in 11 validated hits of which 7 had virulence inhibiting properties and one had bactericidal effect also in wild type Mycobacterium tuberculosis. This strategy to discover virulence inhibitors using a model organism in high-throughput screening can be a valuable tool for other researchers working on drug discovery against tuberculosis and other biosafety level 3 infectious agents.
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a major health threat listed among the top 10 causes of death worldwide. Treatment of multidrug-resistant Mtb requires use of additional second-line drugs that prolong the treatment process and result in higher death rates. Our team previously identified a 2-pyridone molecule (C10) that blocks tolerance to the first-line drug isoniazid at C10 concentrations that do not inhibit bacterial growth. Here, we discovered that the genes rv3160c and rv3161c are highly induced by C10, which led us to investigate them as potential targets. We show that Rv3160c acts as a TetR-like transcriptional repressor binding to a palindromic sequence located in the rv3161c promoter. We also demonstrate that C10 interacts with Rv3160c, inhibiting its binding to DNA. We deleted the rv3161c gene, coding for a putative oxygenase, to investigate its role in drug and stress sensitivity as well as C10 activity. This Δrv3161c strain was more tolerant to isoniazid and lysozyme than wild type Mtb. However, this tolerance could still be blocked by C10, suggesting that C10 functions independently of Rv3161c to influence isoniazid and lysozyme sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.