Despite the ubiquity and magnitude of food provision to wildlife, our understanding of its ecological effects and conservation implications is very limited. Supplementary feeding of ungulates, still one of the main paradigms of game management in Europe, occurs in natural areas on an enormous scale. We investigated the indirect effects of this practice on nest predation risk in the Polish Eastern Carpathians (Bieszczady Mountains). We hypothesized that the predators attracted to ungulate baiting sites would also forage for alternative prey nearby, increasing the nest predation risk for ground-nesting birds in the vicinity. We conducted a paired experiment by placing artificial nests (N = 120) in feeding and control sites (N = 12) at different distances from the ungulate feeding site. We also documented the use of three ungulate feeding sites by potential nest predators with automatic cameras. The proportion of depredated nests was 30% higher in the vicinity of feeding sites than at control sites (65%±31.5 vs 35%±32.1). The probability of a nest being depredated significantly increased with time and at shorter distances from the feeding site. We predicted that the area within 1-km distance from the feeding site would have a high risk (>0.5) of nest predation. We recorded 13 species of potential ground-nest predators at ungulate baiting sites. Most frequent were Eurasian jays Garrulus glandarius, mice and voles Muroidea, ravens Corvus corax, brown bears Ursus arctos, and wild boar Sus scrofa. Nest predators made most use of supplementary feeding sites (82% pictures with predators vs 8% with ungulates, the target group). Our study alerts of the impacts of ungulate feeding on alternative prey; this is of special concern when affecting protected species. We urge for a sensible management of ungulate feeding, which considers potential indirect effects on other species and the spatial and temporal components of food provision.
Non-invasive sampling by hair-trapping is increasingly used worldwide in wildlife research. Despite this rise and the potential of hair samples for ecology and conservation studies, the relative performance of hair collection devices has been rarely tested. Here, we compare the effectiveness of five types of hair traps for brown bears Ursus arctos in the Carpathian Mountains (SE Poland) and test the effects of trap type, season, number of days elapsed since trap installation and trap features on the trapping success in order to provide recommendations for optimal sampling in future studies. The trap types were corral, path-trap, “smola”(beechwood tar) tree-trap, turpentine tree-trap and natural rub. In 2010, we collected 858 hair samples during 2330 inspections of 175 hair traps and found that the most effective traps were smola tree-traps (mean percentage of successful inspections ± SD: 30.2% ± 26.0) and natural rubs (50.8% ± 16.7). Based on this finding, over the following 2 years we focused on 24 smola tree-traps and eight natural rubs. During this long-term survey (2010–2012, 969 inspections, 1322 samples collected) the trapping success increased with time and smola tree-traps achieved similar effectiveness to natural rubs (45.5% ± 29.7 and 45.9 ± 23.4, respectively). We show that when baiting smola tree-traps ten weeks prior to research or monitoring, sampling effectiveness can reach up to 30%. Taking into account the logistical and methodological constraints associated with detecting and using natural rubs for a proper survey design, we recommend using smola tree-traps baited in advance for hair sampling in wildlife studies.
Knowledge about breeding biology is often incomplete in species with complex reproductive strategies. The brown bear Ursus arctos is a polygamous seasonal breeder inhabiting a wide variety of habitats and environmental conditions. We compiled information about brown bear breeding season dates from 36 study areas across their distribution range in the Palearctic and Nearctic regions and investigated how their breeding phenology relates to geographical factors (latitude, photoperiod, altitude and region). Brown bear matings were observed for 8 months, from April to November, with a peak in May-July. We found a 59-day difference in the onset of bear breeding season among study areas, with an average 2.3 days delay for each degree of latitude northwards. The onset of the breeding season showed a strong relationship with photoperiod and latitude, but not with region (i.e. Palearctic vs Nearctic) and altitude. First observations of bear mating occurred earlier in areas at lower latitudes. Photoperiod ranged between 14 and 18 hours at the beginning of the season for most of the study areas. The duration of the breeding season ranged from 25 to 138 days among study areas. None of the investigated factors was related to the length of the breeding season. Our results support the relevance of photoperiod to the onset of breeding, as found in other ursids, but not a shorter breeding season at higher latitudes, a pattern reported in other mammals. Our findings suggest a marked seasonality of bear reproductive behaviour, but also certain level of plasticity. Systematic field observations of breeding behaviour are needed to increase our knowledge on the factors determining mating behaviour in species with complex systems and how these species may adapt to climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.