alpha-Synuclein (alpha-Syn) is a 14 kDa protein of unknown function that has been implicated in the pathophysiology of Parkinson's disease (PD). Here, we show that alpha-Syn-/- mice are viable and fertile, exhibit intact brain architecture, and possess a normal complement of dopaminergic cell bodies, fibers, and synapses. Nigrostriatal terminals of alpha-Syn-/- mice display a standard pattern of dopamine (DA) discharge and reuptake in response to simple electrical stimulation. However, they exhibit an increased release with paired stimuli that can be mimicked by elevated Ca2+. Concurrent with the altered DA release, alpha-Syn-/- mice display a reduction in striatal DA and an attenuation of DA-dependent locomotor response to amphetamine. These findings support the hypothesis that alpha-Syn is an essential presynaptic, activity-dependent negative regulator of DA neurotransmission.
Glial cell-line derived neurotrophic factor (GDNF) is a potent survival factor for embryonic midbrain dopaminergic, spinal motor, cranial sensory, sympathetic, and hindbrain noradrenergic neurons, and is available to these cells in vivo. It is therefore considered a physiological trophic factor and a potential therapeutic agent for Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Here we show that at postnatal day 0 (P0), GDNF-deficient mice have deficits in dorsal root ganglion, sympathetic and nodose neurons, but not in hindbrain noradrenergic or midbrain dopaminergic neurons. These mice completely lack the enteric nervous system (ENS), ureters and kidneys. Thus GDNF is important for the development and/or survival of enteric, sympathetic and sensory neurons and the renal system, but is not essential for catecholaminergic neurons in the central nervous system (CNS).
Satb2 is a DNA-binding protein that regulates chromatin organization and gene expression. In the developing brain, Satb2 is expressed in cortical neurons that extend axons across the corpus callosum. To assess the role of Satb2 in neurons, we analyzed mice in which the Satb2 locus was disrupted by insertion of a LacZ gene. In mutant mice, beta-galactosidase-labeled axons are absent from the corpus callosum and instead descend along the corticospinal tract. Satb2 mutant neurons acquire expression of Ctip2, a transcription factor that is necessary and sufficient for the extension of subcortical projections by cortical neurons. Conversely, ectopic expression of Satb2 in neural stem cells markedly decreases Ctip2 expression. Finally, we find that Satb2 binds directly to regulatory regions of Ctip2 and induces changes in chromatin structure. These data suggest that Satb2 functions as a repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex.
Lymphoid enhancer factor 1 (LEF-1) is a sequence-specific DNA-binding protein that is expressed in pre-B and T lymphocytes of adult mice, and in the neural crest, mesencephalon, tooth germs, whisker follicles, and other sites during embryogenesis. We have generated mice carrying a homozygous germ-line mutation in the LEF-1 gene that eliminates its protein expression and causes postnatal lethality. The mutant mice lack teeth, mammary glands, whiskers, and hair but show no obvious defects in lymphoid cell populations at birth. The I£F-l-deficient mice also lack the mesencephalic nucleus of the trigeminal nerve, the only neural crest-derived neurons normally present within the brain, but no deficiency can be detected in other neural crest-derived neuronal populations. Together, the pattern of these defects suggest an essential role for LEF-1 in the formation of several organs and structures that require inductive tissue interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.