Sex determination in fish is a labile character in evolutionary terms. The sex-determining (SD) master gene can differ even between closely related fish species. This group is an interesting model for studying the evolution of the SD region and the gonadal differentiation pathway. The turbot (Scophthalmus maximus) is a flatfish of great commercial value, where a strong sexual dimorphism exists for growth rate. Following a QTL and marker association approach in five families and a natural population, we identified the main SD region of turbot at the proximal end of linkage group (LG) 5, close to the SmaUSC-E30 marker. The refined map of this region suggested that this marker would be 2.6 cM and 1.4 Mb from the putative SD gene. This region appeared mostly undifferentiated between males and females, and no relevant recombination frequency differences were detected between sexes. Comparative genomics of LG5 marker sequences against five model species showed no similarity of this chromosome to the sex chromosomes of medaka, stickleback, and fugu, but suggested a similarity to a sex-associated QTL from Oreochromis spp. The segregation analysis of the closest markers to the SD region demonstrated a ZW/ZZ model of sex determination in turbot. A small proportion of families did not fit perfectly with this model, which suggests that other minor genetic and/or environmental factors are involved in sex determination in this species.
BackgroundCells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli.ResultsHere, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFα and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38α SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38α the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38α deficient (p38α-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress.ConclusionsOur genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.
The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stressThe stress-activated protein kinase p38 phosphorylates p57/Kip2, resulting in enhanced CDK2 inhibition and a cell-cycle delay that helps cells to survive under stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.