The surface topography of titanium dental implants has a great influence on osseointegration. In this work, we try to determine the osteoblastic behavior and gene expression of cells with different titanium surfaces and relate them to the physicochemical properties of the surface. For this purpose, we have used commercial titanium discs of grade 3: as-received corresponds to machined titanium without any surface treatment (MA), chemically acid etched (AE), treated via sand blasting with Al2O3 particles (SB) and a sand-blasting treatment with acid etching (SB+AE). The surfaces have been observed using scanning electron microscopy (SEM) and the roughness, wettability and surface energy with dispersive and polar components have been characterized. Osteoblastic cultures were performed with SaOS-2 osteoblastic cells determining cell viability as well as alkaline phosphatase levels for 3 and 21 days, and osteoblastic gene expression was determined. The roughness values of the MA discs was 0.02 μm, which increases to 0.3 μm with acid attack and becomes the maximum for the sand-blasted samples, reaching values of 1.2 μm for SB and SB+AE. The hydrophilic behavior of the MA and AE samples with contact angles of 63° and 65° is superior to that of the rougher samples, being 75° for SB and 82° for SB+AE. In all cases, they show good hydrophilicity. GB and GB+AE surfaces present a higher polar component in the surface energy values, 11.96 and 13.18 mJ/m2, respectively, than AE and MA, 6.64 and 9.79 mJ/m2, respectively. The osteoblastic cell viability values at three days do not show statistically significant differences between the four surfaces. However, the viability of the SB and SB+AE surfaces at 21 days is much higher than that of the AE and MA samples. From the alkaline phosphatase studies, higher values were observed for those treated with sand blasting with and without acid etching compared to the other two surfaces, indicating a greater activity in osteoblastic differentiation. In all cases except in the Osterix (Ostx) —osteoblast-specific transcription factor—a decrease in gene expression is observed in relation to the MA samples (control). The most important increase was observed for the SB+AE condition. A decrease in the gene expression of Osteoprotegerine (OPG), Runt-related transcription factor 2 (Runx2), Receptor Activator of NF-κB Ligand (RANKL) and Alkaline Phosphatase (Alp) genes was observed in the AE surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.