Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1–3. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation1. NASA’s Double Asteroid Redirection Test (DART) mission is a full-scale test of kinetic impact technology. The mission’s target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by the impact of the DART spacecraft4. Although past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft’s autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in the orbit of Dimorphos7 demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary.
Some active asteroids have been proposed to be formed as a result of impact events1. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA2, in addition to having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact4,5. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact1,6.
SUMMARYThis paper proposes a two-dimensional (2D) model for the analysis of the propagation of fast landslides involving a fluidized material such as debris and mud flows, flowslides and avalanching flows. The model is based on the Navier-Stokes depth-integrated equations. To incorporate the effect of steep slopes and centrifugal forces due to the high velocities characterizing the flowslides and the bed curvature, a curvilinear system of reference is used. The corresponding equations of motion are complemented by depth-averaged constitutive equations and bed friction laws.The resulting set of differential equations are solved using the two-step Taylor-Galerkin algorithm. This algorithm has been used by the authors to solve hydraulic and dam-break problems using the finite element method. Owing to the importance of the source term compared to the advection component, the proposed algorithm follows a splitting scheme using a fourth-order Runge-Kutta method for integrating the friction and slope components.The performance of the overall approach has been checked in a number of examples. The analysis of the results provides insights into the key elements of the model and shows the adequacy of the method to solve real problems where merging and splitting of the flow occur.
SUMMARYThe damage caused by impulse waves generated in water bodies by fast landslides can be very high in terms of human lives and economic losses. The complex phenomena taking place in this highly unsteady process are difficult to model because three interacting phases: air, water and soil are involved. Solutions currently available are based on either closed form equations supported experimentally or the depth integrated Navier-Stokes equations. The latter, although of more general applicability, requires knowledge of the evolution of the bathimetry and slide drag forces and their applicability may be restricted by the steep slopes existing in most real cases.To avoid these limitations, the authors propose the solution of the full Navier-Stokes equations, using indicator functions to assign the material properties to each spatial point in the domain. The method performance is illustrated by comparison against the experimental results obtained in a physical model of an actual case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.