Controlling the water quality of water supplies has always been a critical challenge, and water resource monitoring has become a need in recent years. Manual monitoring is not recommended in the case of large water surfaces for a variety of reasons, including expense and time consumption. In the last few years, researchers have proposed the use of autonomous vehicles for monitoring tasks. Fleets or swarms of vehicles can be deployed to conduct water resource explorations by using path planning techniques to guide the movements of each vehicle. The main idea of this work is the development of a monitoring system for Ypacarai Lake, where a fleet of autonomous surface vehicles will be guided by an improved particle swarm optimization based on the Gaussian process as a surrogate model. The purpose of using the surrogate model is to model water quality parameter behavior and to guide the movements of the vehicles toward areas where samples have not yet been collected; these areas are considered areas with high uncertainty or unexplored areas and areas with high contamination levels of the lake. The results show that the proposed approach, namely the enhanced GP-based PSO, balances appropriately the exploration and exploitation of the surface of Ypacarai Lake. In addition, the proposed approach has been compared with other techniques like the original particle swarm optimization and the particle swarm optimization with Gaussian process uncertainty component in a simulated Ypacarai Lake environment. The obtained results demonstrate the superiority of the proposed enhanced GP-based PSO in terms of mean square error with respect to the other techniques.
Todos los derechos reservados. De conformidad con lo dispuesto en la legislación vigente, podrán ser cas�gados con penas de multa y privación de libertad quienes reproduzcan o plagien, en todo o en parte, una obra literaria, ar�s�ca o cien�fica, fijada en cualquier �po y soporte, sin la precep�va autorización. JA2017 Prefacio Prefacio Las Jornadas de Automática se celebran desde hace 40 años en una universidad nacional facilitando el encuentro entre expertos en estaárea en un foro que permite la puesta en común de las nuevas ideas y proyectos en desarrollo. Al mismo tiempo, propician la siempre necesaria colaboración entre investigadores delámbito de la Ingeniería de Control y Automática, así como de campos afines, a la hora de abordar complejos proyectos de investigación multidisciplinares. En esta ocasión, las Jornadas estarán organizadas por la Universidad de Oviedo y se han celebrado del 6 al 8 de septiembre de
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.