The development of force-responsive molecules called mechanophores is a central component of the field of polymer mechanochemistry. Mechanophores enable the design and fabrication of polymers for a variety of applications ranging from sensing to molecular release and self-healing materials. Nevertheless, an insufficient understanding of structure−activity relationships limits experimental development, and thus computation is necessary to guide the structural design of mechanophores. The constrained geometries simulate external force (CoGEF) method is a highly accessible and straightforward computational technique that simulates the effect of mechanical force on a molecule and enables the prediction of mechanochemical reactivity. Here, we use the CoGEF method to systematically evaluate every covalent mechanophore reported to date and compare the predicted mechanochemical reactivity to experimental results. Molecules that are mechanochemically inactive are also studied as negative controls. In general, mechanochemical reactions predicted with the CoGEF method at the common B3LYP/6-31G* level of density functional theory are in excellent agreement with reactivity determined experimentally. Moreover, bond rupture forces obtained from CoGEF calculations are compared to experimentally measured forces and demonstrated to be reliable indicators of mechanochemical activity. This investigation validates the CoGEF method as a powerful tool for predicting mechanochemical reactivity, enabling its widespread adoption to support the developing field of polymer mechanochemistry. Secondarily, this study provides a contemporary catalog of over 100 mechanophores developed to date.
Transient X-ray and extreme ultraviolet (XUV) spectroscopies have become invaluable tools for studying photoexcited dynamics due to their sensitivity to carrier occupations and local chemical or structural changes. One of the most studied materials using transient XUV spectroscopy is α-Fe2O3 because of its rich photoexcited dynamics, including small polaron formation. The interpretation of carrier and polaron effects in α-Fe2O3 is currently done using a semi-empirical method that is not transferrable to most materials. Here, an ab initio, Bethe-Salpeter equation (BSE) approach is developed that can incorporate photoexcited state effects for arbitrary materials systems. The accuracy of this approach is proven by calculating the XUV absorption spectra for the ground, photoexcited, and polaron states of -Fe2O3. Furthermore, the theoretical approach allows for the projection of the core-valence excitons and different components of the X-ray transition Hamiltonian onto the band structure, providing new insights into old measurements. From this information, a physical intuition about the origins and nature of the transient XUV spectra can be built. A route to extracting electron and hole energies is even shown possible for highly angular momentum split XUV peaks. This method is easily generalized to K, L, M, and N edges to provide a general approach for analyzing transient X-ray absorption or reflection data.
Transient extreme ultraviolet (XUV) spectroscopy is becoming a valuable tool for characterizing solar energy materials because it can separate photoexcited electron and hole dynamics with element specificity. Here, we use surface-sensitive femtosecond XUV reflection spectroscopy to separately measure photoexcited electron, hole, and band gap dynamics of ZnTe, a promising photocathode for CO 2 reduction. We develop an ab initio theoretical framework based on density functional theory and the Bethe−Salpeter equation to robustly assign the complex transient XUV spectra to the material's electronic states. Applying this framework, we identify the relaxation pathways and quantify their time scales in photoexcited ZnTe, including subpicosecond hot electron and hole thermalization, surface carrier diffusion, ultrafast band gap renormalization, and evidence of acoustic phonon oscillations.
Transient X-ray absorption techniques can measure ultrafast dynamics of the elemental edges in a material or multiple layer junction, giving them immense potential for deconvoluting concurrent processes. However, the interpretation of the photoexcited changes to an X-ray edge is not as simple as directly probing a transition with optical or infrared wavelengths. The core hole left by the core-level transition distorts the measured absorption and reflection spectra, both hiding and revealing different aspects of a photo-induced process. In this perspective, we describe the implementation and interpretation of transient X-ray experiments. This description includes a guide of how to choose the best wavelength and corresponding X-ray sources when designing an experiment. As an example, we focus on the rising use of extreme ultraviolet (XUV) spectroscopy for understanding performance limiting behaviors in solar energy materials, such as measurements of polaron formation, electron and hole kinetics, and charge transport in each layer of a metal-oxide-semiconductor junction. The ability of measuring photoexcited carriers in each layer of a multilayer junction could prove particularly impactful in the study of molecules, materials, and their combinations that lead to functional devices in photochemistry and photoelectrochemistry.
Transient X-ray spectroscopies have become ubiquitous in studying photoexcited dynamics in solar energy materials due to their sensitivity to carrier occupations and local chemical or structural dynamics. The interpretation of solid-state photoexcited dynamics, however, is complicated by the core−hole perturbation and the resulting many-body dynamics. Here, an ab initio, Bethe−Salpeter equation (BSE) approach is developed that can incorporate photoexcited state effects for solid-state materials. The extreme ultraviolet (XUV) absorption spectra for the ground, photoexcited, and thermally expanded states of first row transition metal oxides�TiO 2 , α-Cr 2 O 3 , β-MnO 2 , α-Fe 2 O 3 , Co 3 O 4 , NiO, CuO, and ZnO�are calculated to demonstrate the accuracy of this approach. The theory is used to decompose the core−valence excitons into the separate components of the X-ray transition Hamiltonian for each of the transition metal oxides investigated. The decomposition provides a physical intuition about the origins of XUV spectral features as well as how the spectra will change following photoexcitation. The method is easily generalized to other K, L, M, and N edges to provide a general approach for analyzing transient X-ray absorption or reflection data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.