Barkhausen Magnetic Noise (MBN) and Magnetic Acoustic Emission (MAE) are phenomena that occur in ferromagnetic materials which undergo changes in their magnetization. These phenomena are very sensitive to changes on microstructure and residual stresses. The MBN and MAE can be applied as monitoring techniques to detect plastic deformation in materials subjected to thermomechanical processes, such as machining and manufacturing processes. In this work, the plastic deformation in samples subjected to uniaxial tensile tests is investigated through MBN and MAE. Twelve stainless steel test pieces of two different materials (AISI 430 and AISI 441A), were tested. As a first step, in order to obtain their mechanical properties, two test pieces of each material cut in different directions with respect to the rolling direction, were tested up to rupture. The others were deformed in four stages on plastic deformation. After each stage, MBN and MAE measurements were made, in order to obtain a correlation with the strain and the magnetic situation of the materials. We present here the microstructural analyses, the study of MBN and MAE signals, correlating them with the state of deformation of the specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.