As NASA moves to long-duration space exploration operations, there is an increasing need for human-agent cooperation that requires real-time trust estimation by virtual agents. Our objective was to estimate trust using conversational data, including lexical and acoustic features, with machine learning. A 2 (reliability) × 2 (cycles) × 3 (events) within-subject study was designed to provoke various levels of trust. Participants had trust-related conversations with a conversational agent at the end of each event. To estimate trust, subjective trust ratings were predicted using machine learning models trained on three types of conversational features (i.e., lexical, acoustic, and combined). Results showed that a random forest model, trained on the combined lexical and acoustic features, best predicts trust in the conversational agent (R2adj = 0.67). Comparing models, we showed that trust is not only reflected in lexical cues but also acoustic cues. These results show the possibility of using conversational data to measure trust unobtrusively and dynamically.
Objective The objective of this study was to estimate trust from conversations using both lexical and acoustic data. Background As NASA moves to long-duration space exploration operations, the increasing need for cooperation between humans and virtual agents requires real-time trust estimation by virtual agents. Measuring trust through conversation is a novel and unintrusive approach. Method A 2 (reliability) × 2 (cycles) × 3 (events) within-subject study with habitat system maintenance was designed to elicit various levels of trust in a conversational agent. Participants had trust-related conversations with the conversational agent at the end of each decision-making task. To estimate trust, subjective trust ratings were predicted using machine learning models trained on three types of conversational features (i.e., lexical, acoustic, and combined). After training, model explanation was performed using variable importance and partial dependence plots. Results Results showed that a random forest algorithm, trained using the combined lexical and acoustic features, predicted trust in the conversational agent most accurately [Formula: see text]. The most important predictors were a combination of lexical and acoustic cues: average sentiment considering valence shifters, the mean of formants, and Mel-frequency cepstral coefficients (MFCC). These conversational features were identified as partial mediators predicting people’s trust. Conclusion Precise trust estimation from conversation requires lexical cues and acoustic cues. Application These results showed the possibility of using conversational data to measure trust, and potentially other dynamic mental states, unobtrusively and dynamically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.