In this paper an eigenvalue complementarity problem (EiCP) is studied, which finds its origins in the solution of a contact problem in mechanics. The EiCP is shown to be equivalent to a Nonlinear Complementarity Problem, a Mathematical Programming Problem with Complementarity Constraints and a Global Optimization Problem. A finite Reformulation-Linearization Technique (RLT)-based tree search algorithm is introduced for processing the EiCP via the lattermost of these formulations. Computational experience is included to highlight the efficacy of the above formulations and corresponding techniques for the solution of the EiCP.
In this paper, we discuss the Eigenvalue Complementarity Problem (EiCP) where at least one of its defining matrices is asymmetric. A sufficient condition for the existence of a solution to the EiCP is established. The EiCP is shown to be equivalent to finding a global minimum of an appropriate merit function on a convex set Ω defined by linear constraints. A sufficient condition for a stationary point of this function on Ω to be a solution of the EiCP is presented.A branch-and-bound procedure is developed for finding a global minimum of this merit function on Ω. In addition, a sequential enumerative algorithm for the computation of the minimum and the maximum eigenvalues is also discussed. Computational experience is included to highlight the efficiency and efficacy of the proposed methodologies to solve the asymmetric EiCP.
In this paper two enumerative algorithms for the Linear Complementarity Problems (LCP) are discussed. These procedures exploit the equivalence of the LCP into a nonconvex quadratic and a bilinear programs. It is shown that these algorithms are efficient for processing NP-hard LCPs associated with reformulations of the Knapsack problem and should be recommended to solve difficult LCPs.
The application of mathematical programming for scheduling preventive maintenance in railways is relatively new. This paper presents a stochastic mathematical model designed to optimize and to predict tamping operations in ballasted tracks as preventive condition-based maintenance. The model is formulated as a mixed 0–1 nonlinear program that considers real technical aspects as constraints: the reduction of the geometrical track quality over time is characterized by the deterioration rate of the standard deviation of the longitudinal level; the track layout; the dependency of the track recovery on its quality at the moment of the maintenance operation; the limits for preventive maintenance that depend on the maximum permissible train speed. In the model application, a railway stretch with 51.2 km of length is analysed for a time period of five years. The deterioration model is stochastic and represents the reduction of the standard deviation of the longitudinal level over time. The deterioration rate of the standard deviation of the longitudinal level is simulated by Monte Carlo techniques, considering the three parameters Dagum probabilistic distribution fitted with real data (Vale, Simões 2012). Two simulations are performed and compared: stochastic simulation in space; stochastic simulation in space and time. The proposed condition-based maintenance model is able to produce optimal schedules within appropriate computational times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.