We describe the isolation and partial characterization of Saccharomyces cerevisiae nonconditional mutants that show defects in N-glycosylation of proteins. The selection method is based on the reduction of affinity for the ion exchanger QAE-Sephadex as a consequence of the decrease in the negative charge of the cell surface. This characteristic reflects a decrease in the incorporation of mannosylphosphate units into the N-linked oligosaccharides of the mannoproteins. The mutants exhibit low affinity for the basic dye alcian blue and for that reason we have called them Idb (low dye binding) mutants. Eight of the complementation groups seem to be new as shown by complementation studies with previously isolated mutants of similar phenotype. Four of the groups showed a significant reduction in the number and/or size of the N-linked oligosaccharides attached to secreted invertase. We have analyzed the N-linked oligosaccharides of Idb1 and Idb2, the mutants that show the most drastic reduction in the affinity for the alcian blue dye. In both cases, the purified endo H-released oligosaccharides from the mannoproteins lacked detectable amounts of phosphate groups as shown by ion exchange chromatography and the 1H NMR spectra. In addition, Ibd1 synthesizes a truncated and unbranched outer chain lacking any alpha (1,2) linked mannoses attached to the alpha (1,6) linear backbone.
Conventional complex media are routinely used to grow auxotrophic strains under the assumption that they can compensate the latter's nutritional deficiencies. We here demonstrate that this is not always true. This study compares the growth parameters of Saccharomyces cerevisiae (S288C) and its derived auxotrophic strains FY1679-14C and BY4741 in synthetic minimal medium (SD), standard YPD medium from two of the most commonly used suppliers, or modified YPD medium. Maximum specific growth rates of auxotrophic strains were slightly lower than the prototrophic case in all growth conditions tested. Also, the biomass production of auxotrophic strains in synthetic medium was slightly less than the prototrophic case. However in both of the two standard YPD media used, the biomass production of both auxotrophic strains was markedly lower than that of the prototrophic one. The extent of the differences depended on the medium used. Indeed in one of the two YPD media, the lower biomass production of auxotrophic strains was evident even at the diauxic shift. Uracil seems to be the main limiting growth factor for both auxotrophic strains growing in the two standard YPD medium tested. No YPD media or specific supplement was able to compensate for the effect of the auxotrophic mutations in the multiple auxotrophic marker strain BY4741. The fact that auxotrophic strains grew poorly on YPD when compared to their prototrophic counterpart indicates that standard YPD medium is not sufficient to overcome the effect of auxotrophic mutations.
We have completed the identification of Saccharomyces cerevisiae genes that are defective in previously isolated ldb (low-dye-binding) mutants. This was done by complementation of the mutant's phenotype with DNA fragments from a genomic library and by running standard tests of allelism with single-gene deletion mutants of similar phenotype. The results were as follows: LDB2 is allelic to ERD1 ; LDB4 to SPC72; LDB5 to RLR1; LDB6 to GON7/YJL184W; LDB7 to YBL006C; LDB9 to ELM1; LDB10 to CWH36; LDB11 to COG1; LDB12 to OCH1; LDB13 to VAN1; LDB14 to BUD32; and LDB15 to PHO85. Since the precise function of some of the genes is not known, these data may contribute to the functional characterization of the S. cerevisiae genome.
Exoglucanases secreted by two different strains from Candida albicans have been purified to homogeneity. The purified enzyme from each strain behaved as a non-glycosylated monomer (molecular weight 38,000) that was identical in terms of sodium dodecyl sulphate/polyacrylamide gel electrophoresis comigration, amino acid analysis and amino terminal sequence. The amino acid composition was similar to that of the major exoglucanase from Saccharomyces cerevisiae. In addition, these two enzymes displayed a 50% homology in the first 35 amino acids of the amino terminus. Antibodies against the deglycosylated exoglucanase (treated with Endo H) from S. cerevisiae were reactive with the exoglucanase from C. albicans and vice versa. Immunoblotting proved to be a semiquantitative method to detect C. albicans antigen in culture fluids. The exoglucanase from C. albicans appears to enter the secretory pathway without undergoing N-glycosylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.