Purpose: To assess image quality and to quantify the accuracy of relative electron densities (q e ) and effective atomic numbers (Z eff ) for three dual-energy computed tomography (DECT) scanners: a novel single-source split-filter (i.e., twin-beam) and two dual-source scanners. Methods: Measurements were made with a second generation dual-source scanner at 80/ 140Sn kVp, a third-generation twin-beam single-source scanner at 120 kVp with gold (Au) and tin (Sn) filters, and a third-generation dual-source scanner at 90/150Sn kVp. Three phantoms with tissue inserts were scanned and used for calibration and validation of parameterized methods to extract q e and Z eff , whereas iodine and calcium inserts were used to quantify Contrast-to-Noise-Ratio (CNR). Spatial resolution in tomographic images was also tested. Results: The third-generation scanners have an image resolution of 6.2,~0.5 lp/cm higher than the second generation scanner. The twin-beam scanner has low imaging contrast for iodine materials due to its limited spectral separation. The parameterization methods resulted in calibrations with low fit residuals for the dual-source scanners, yielding values of q e and Z eff close to the reference values (errors within 1.2% for q e and 6.2% for Z eff for a dose of 20 mGy, excluding lung substitute tissues). The twin-beam scanner presented overall higher errors (within 3.2% for q e and 28% for Z eff , also excluding lung inserts) and also larger variations for uniform inserts. Conclusions: Spatial resolution is similar for the three scanners. The twin-beam is able to derive q e and Z eff , but with inferior accuracy compared to both dual-source scanners.
Despite extensive research in dual-energy computed tomography (CT), single-energy CT (SECT) is still the standard imaging modality in proton therapy treatment planning and, in this context, the stoichiometric calibration method is considered to be the most accurate to establish a relationship between CT numbers and proton stopping power. This work revisits the SECT calibration for proton therapy treatment planning, with special emphasis on the stoichiometric method. Three different sets of tissue-substitutes of known elemental composition (Gammex, CIRS and Catphan) were scanned with the same scanning protocol. A stoichiometric fit was performed for each set of tissue-substitutes. Based on that, the CT number, relative electron density and relative proton stopping power were calculated for ICRU 46 biological tissues and the different sets of tissue-substitutes. Despite common belief, it was found that the stoichiometric fit depends on the elemental composition of the tissue-substitutes used in the calibration, leading to differences in relative stopping power up to 3.5% for cortical bone. In addition, according to Rutherford et al (1976 Neuroradiology 11 15-21) parametrization of the atomic cross-section, CT numbers of Gammex tissue-substitutes and ICRU 46 biological tissues were found to be similar within the whole energy range relevant to computed tomography. Consequently, it was found that, for Gammex tissue-substitutes, the CT calibration curve resulting from the stoichiometric method agrees with that obtained by simple interpolation of experimental data. In conclusion, the stoichiometric method for SECT calibration seems to depend on the tissue-substitutes used for calibration-which could be regarded as an additional source of uncertainty in proton range for bone tissues. Furthermore, Gammex tissue-substitutes appear to be a good representative of biological tissues within the energy range relevant to computed tomography-making the stoichiometric method unnecessary.
Objectives: To describe the measurements and to present the results of the beam commissioning and the beam model validation of a compact, gantry-mounted, spot scanning proton accelerator system with dynamic layer-by-layer field collimation. Methods: We performed measurements of depth dose distributions in water, spot and scanned field size in air at different positions from the isocenter plane, spot position over the 20 × 20 cm2 scanned area, beam monitor calibration in terms of absorbed dose to water and specific field collimation measurements at different gantry angles to commission the system. To validate the beam model in the treatment planning system (TPS), we measured spot profiles in water at different depths, absolute dose in water of single energy layers of different field sizes and inversely optimised spread-out Bragg peaks (SOBP) under normal and oblique beam incidence, field size and penumbra in water of SOBPs, and patient treatment specific quality assurance in homogeneous and heterogeneous phantoms. Results: Energy range, spot size, spot position and dose output were consistent at all gantry angles with 0.3 mm, 0.4 mm, 0.6 mm and 0.5% maximum deviations, respectively. Uncollimated spot size (one sigma) in air with an air-gap of 10 cm ranged from 4.1 to 16.4 mm covering a range from 32.2 to 1.9 cm in water, respectively. Absolute dose measurements were within 3% when comparing TPS and experimental data. Gamma pass rates >98% and >96% at 3%/3 mm were obtained when performing 2D dose measurements in homogeneous and in heterogeneous media, respectively. Leaf position was within ±1 mm at all gantry angles and nozzle positions. Conclusions: Beam characterisation and machine commissioning results, and the exhaustive end-to-end tests performed to assess the proper functionality of the system, confirm that it is safe and accurate to treat patients. Advances in knowledge: This is the first paper addressing the beam commissioning and the beam validation of a compact, gantry-mounted, pencil beam scanning proton accelerator system with dynamic layer-by-layer multileaf collimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.