Autophagy is triggered in vascular smooth muscle cells (VSMCs) of diseased arterial vessels. However, the role of VSMC autophagy in cardiovascular disease is poorly understood. Therefore, we investigated the effect of defective autophagy on VSMC survival and phenotype and its significance in the development of postinjury neointima formation and atherosclerosis. Tissue-specific deletion of the essential autophagy gene Atg7 in murine VSMCs (atg7−/− VSMCs) caused accumulation of SQSTM1/p62 and accelerated the development of stress-induced premature senescence as shown by cellular and nuclear hypertrophy, CDKN2A-RB-mediated G1 proliferative arrest and senescence-associated GLB1 activity. Transfection of SQSTM1-encoding plasmid DNA in Atg7+/+ VSMCs induced similar features, suggesting that accumulation of SQSTM1 promotes VSMC senescence. Interestingly, atg7−/− VSMCs were resistant to oxidative stress-induced cell death as compared to controls. This effect was attributed to nuclear translocation of the transcription factor NFE2L2 resulting in upregulation of several antioxidative enzymes. In vivo, defective VSMC autophagy led to upregulation of MMP9, TGFB and CXCL12 and promoted postinjury neointima formation and diet-induced atherogenesis. Lesions of VSMC-specific atg7 knockout mice were characterized by increased total collagen deposition, nuclear hypertrophy, CDKN2A upregulation, RB hypophosphorylation, and GLB1 activity, all features typical of cellular senescence. To conclude, autophagy is crucial for VSMC function, phenotype, and survival. Defective autophagy in VSMCs accelerates senescence and promotes ligation-induced neointima formation and diet-induced atherogenesis, implying that autophagy inhibition as therapeutic strategy in the treatment of neointimal stenosis and atherosclerosis would be unfavorable. Conversely, stimulation of autophagy could be a valuable new strategy in the treatment of arterial disease.
Root hairs facilitate a plant's ability to acquire soil anchorage and nutrients. Root hair growth is regulated by the plant hormone auxin and dependent on localized synthesis, secretion, and modification of the root hair tip cell wall. However, the exact cell wall regulators in root hairs controlled by auxin have yet to be determined. In this study, we describe the characterization of ERULUS (ERU), an auxin-induced Arabidopsis receptor-like kinase, whose expression is directly regulated by ARF7 and ARF19 transcription factors. ERU belongs to the Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) subfamily of putative cell wall sensor proteins. Imaging of a fluorescent fusion protein revealed that ERU is localized to the apical root hair plasma membrane. ERU regulates cell wall composition in root hairs and modulates pectin dynamics through negative control of pectin methylesterase (PME) activity. Mutant eru (-/-) root hairs accumulate de-esterified homogalacturonan and exhibit aberrant pectin Ca-binding site oscillations and increased PME activity. Up to 80% of the eru root hair phenotype is rescued by pharmacological supplementation with a PME-inhibiting catechin extract. ERU transcription is altered in specific cell wall-related root hair mutants, suggesting that it is a target for feedback regulation. Loss of ERU alters the phosphorylation status of FERONIA and H-ATPases 1/2, regulators of apoplastic pH. Furthermore, H-ATPases 1/2 and ERU are differentially phosphorylated in response to auxin. We conclude that ERULUS is a key auxin-controlled regulator of cell wall composition and pectin dynamics during root hair tip growth.
Purpose Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene only explain a small number of X-linked TAAD families. Methods We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was carried out. Results We found five individuals with loss-of-function mutations in BGN, encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures and mild skeletal dysplasia. Fluorescent stainings revealed an increase in TGF-β signalling, evidenced by an increase in nuclear pSMAD2 in aortic wall. Our results are in line with prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. Conclusion In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD, associated with preservation of elastic fibres and increased TGF-β signalling.
Transplantation with donor corneas is the mainstay for treating corneal blindness, but a severe worldwide shortage necessitates the development of other treatment options. Corneal perforation from infection or inflammation is sealed with cyanoacrylate glue. However, the resulting cytotoxicity requires transplantation. LiQD Cornea is an alternative to conventional corneal transplantation and sealants. It is a cell-free, liquid hydrogel matrix for corneal regeneration, comprising short collagen-like peptides conjugated with polyethylene glycol and mixed with fibrinogen to promote adhesion within tissue defects. Gelation occurs spontaneously at body temperature within 5 min. Light exposure is not required—particularly advantageous because patients with corneal inflammation are typically photophobic. The self-assembling, fully defined, synthetic collagen analog is much less costly than human recombinant collagen and reduces the risk of immune rejection associated with xenogeneic materials. In situ gelation potentially allows for clinical application in outpatient clinics instead of operating theaters, maximizing practicality, and minimizing health care costs.
The epithelium of intrapulmonary airways in many species harbors diffusely spread innervated groups of neuroendocrine cells, called neuroepithelial bodies (NEBs). Data on the location, morphology, and chemical coding of NEBs in mammalian lungs are abundant, but none of the proposed functions has so far been fully established. Besides C-fiber afferents, slowly adapting stretch receptors, and rapidly adapting stretch receptors, recent reviews have added NEBs to the list of presumed sensory receptors in intrapulmonary airways. Physiologically, the innervation of NEBs, however, remains enigmatic. This short overview summarizes our present understanding of the chemical coding and exact location of the receptor end organs of myelinated vagal airway afferents in intrapulmonary airways. The profuse populations that selectively contact complex pulmonary NEB receptors are compared with the much smaller group of smooth muscle-associated airway receptors. The main objective of our contribution was to stimulate the idea that the different populations of myelinated vagal afferents that selectively innervate intraepithelial pulmonary NEBs may represent subpopulations of the extensive group of known electrophysiologically characterized myelinated vagal airway receptors. Future efforts should be directed toward finding out which airway receptor groups are selectively coupled to the complex NEB receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.