Cuttlebone, the sophisticated buoyancy device of cuttlefish, is made of extensive superposed chambers that have a complex internal arrangement of calcified pillars and organic membranes. It has not been clear how this structure is assembled. We find that the membranes result from a myriad of minor membranes initially filling the whole chamber, made of nanofibres evenly oriented within each membrane and slightly rotated with respect to those of adjacent membranes, producing a helical arrangement. We propose that the organism secretes a chitin–protein complex, which self-organizes layer-by-layer as a cholesteric liquid crystal, whereas the pillars are made by viscous fingering. The liquid crystallization mechanism permits us to homologize the elements of the cuttlebone with those of other coleoids and with the nacreous septa and the shells of nautiloids. These results challenge our view of this ultra-light natural material possessing desirable mechanical, structural and biological properties, suggesting that two self-organizing physical principles suffice to understand its formation.
During the late Tortonian (upper Miocene), the Guadix Basin in S Spain formed one of the Betic corridors that connected the Mediterranean Sea with the Atlantic Ocean. The closure of this connection occurred in a series of steps, documented by three sedimentary units. A lower unit, consisting of basinal marls, shallowwater calcarenites and sands records the formation of a wide seaway. During deposition of the following unit this narrowed to a strait no more than 2 km in wide, triggering an intensification of currents that caused migration of submarine dunes preserved as giant crossbeds in bioclastic sands and conglomerates. Current flowed from the Mediterranean to the Atlantic. The third unit constitutes the youngest marine episode of the filling of the Guadix Basin. At this stage, the connection between the Mediterranean Sea and the Atlantic Ocean was broken, and a system of coastal coral reefs was established in the northern part of the Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.