IntroductionMonogenetic renal diseases, including recessively inherited nephrotic syndromes, represent a significant health burden despite being rare conditions. Precise diagnosis, including identification of the underlying molecular cause, is especially difficult in low-income countries and/or if affected individuals are unavailable for biochemical testing. Whole-exome sequencing (WES) has opened up novel diagnostic perspectives for these settings. However, sometimes the DNA of affected individuals is not suitable for WES due to low amounts or degradation.MethodsWe report on the use of parental WES with implementation of specific stepwise variant filtering to identify the underlying molecular cause of the childhood-onset nephrotic syndrome as nephrosialidosis resulting from a mutation in NEU1.ResultsSequencing both parents enabled a nephrosialidosis diagnosis in the deceased child. To date, only 16 other cases of nephrosialidosis have been reported in the literature, with only 1 genetically confirmed case. After we reviewed the clinical information of all reported cases, we found that most patients presented with proteinuria, which started at between 2 and 3 years of age. Renal pathology showed mainly focal segmental glomerulosclerosis (FSGS)with vacuolated cells, and steroid treatment was always unsuccessful. Hepatomegaly was present in nearly all cases, whereas corneal clouding and a cherry red spot on the macula was observed in only approximately 50% of cases. Fourteen of 16 previously reported cases were no longer alive at the time of reporting.ConclusionsOur findings demonstrate the power of parental WES to diagnose rare genetic diseases, such as childhood-onset nephrotic syndrome. We further provide a comprehensive overview of the clinical course of nephrosialidosis and raise awareness of this ultra-rare condition as an underlying cause of FSGS.
Cytoplasmic Dynein-2 or IFT-dynein is the only known retrograde motor for intraflagellar transport, enabling protein trafficking from the ciliary tip to the base. Dysfunction of WDR34 and WDR60, the two intermediate chains of this complex, causes Short Rib Thoracic Dystrophy (SRTD), human skeletal chondrodysplasias with high lethality. Complete loss of function of WDR34 or WDR60 is lethal in vertebrates and individuals with SRTD carry at least one putative hypomorphic missense allele. Gene knockout is therefore not suitable to study the effect of these human missense disease alleles. Using CRISPR single base editors, we recreated three different patient missense alleles in cilia-APEX-IMCD3 cells. Consistent with previous findings in dynein-2 full loss of function models and patient fibroblasts, mutant cell lines showed hedgehog signaling defects as well as disturbed retrograde IFT. Transcriptomics analysis revealed differentially regulated expression of genes associated with various biological processes, including G-protein-coupled receptor signaling as well extracellular matrix composition, endochondral bone growth and chondrocyte development. Further, we also observed differential regulation of genes associated with Golgi intracellular transport, including downregulation of Rab6b, a GTPase involved in Golgi-ER retrograde protein trafficking and interacting with components of cytoplasmic dynein-1, in mutant ciliated and non-ciliated clones compared to controls. In addition to providing cellular model systems enabling investigations of the effect of human SRTD disease alleles, our findings indicate non-ciliary functions for WDR34 and WDR60 in addition to the established roles as components of the retrograde IFT motor complex in cilia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.