Genomic imprinting is regulated by parental-specific DNA methylation of imprinting control regions (ICRs). Despite an identical DNA sequence, ICRs can exist in two distinct epigenetic states that are memorized throughout unlimited cell divisions and reset during germline formation. Here, we systematically study the genetic and epigenetic determinants of this epigenetic bistability. By iterative integration of ICRs and related DNA sequences to an ectopic location in the mouse genome, we first identify the DNA sequence features required for maintenance of epigenetic states in embryonic stem cells. The autonomous regulatory properties of ICRs further enabled us to create DNA-methylation-sensitive reporters and to screen for key components involved in regulating their epigenetic memory. Besides DNMT1, UHRF1 and ZFP57, we identify factors that prevent switching from methylated to unmethylated states and show that two of these candidates, ATF7IP and ZMYM2, are important for the stability of DNA and H3K9 methylation at ICRs in embryonic stem cells.
Nucleosome-depleted regions (NDRs) at gene promoters support initiation of RNA polymerase II transcription. Interestingly, transcription often initiates in both directions, resulting in an mRNA and a divergent non-coding (DNC) transcript of unclear purpose. Here, we characterized the genetic architecture and molecular mechanism of DNC transcription in budding yeast. Using highthroughput reverse genetic screens based on quantitative singlecell fluorescence measurements, we identified the Hda1 histone deacetylase complex (Hda1C) as a repressor of DNC transcription. Nascent transcription profiling showed a genome-wide role of Hda1C in repression of DNC transcription. Live-cell imaging of transcription revealed that mutations in the Hda3 subunit increased the frequency of DNC transcription. Hda1C contributed to decreased acetylation of histone H3 in DNC transcription regions, supporting DNC transcription repression by histone deacetylation. Our data support the interpretation that DNC transcription results as a consequence of the NDR-based architecture of eukaryotic promoters, but that it is governed by locus-specific repression to maintain genome fidelity.
Nucleosome-depleted regions (NDRs) at gene promoters support initiation of RNA Polymerase II transcription. Interestingly, transcription often initiates in both directions, resulting in an mRNA, and a divergent non-coding (DNC) transcript with an unclear purpose. Here, we characterized the genetic architecture and molecular mechanism of DNC transcription in budding yeast. We identified the Hda1 histone deacetylase complex (Hda1C) as a repressor of DNC in high-throughput reverse genetic screens based on quantitative single-cell fluorescence measurements. Nascent transcription profiling showed a genome-wide role of Hda1C in DNC repression. Live-cell imaging of transcription revealed that Hda1C reduced the frequency of DNC transcription. Hda1C contributed to decreased acetylation of histone H3 in DNC regions, supporting DNC repression by histone deacetylation. Our data support the interpretation that DNC results as a consequence of the NDR-based architecture of eukaryotic promoters, but that it is governed by locus-specific repression to maintain genome fidelity.
RNA polymerase II (RNAPII) frequently transcribes non-protein coding DNA sequences in eukaryotic genomes into long non-coding RNA (lncRNA). Here, we focus on the impact of the act of lncRNA transcription on nearby functional DNA units. Distinct molecular mechanisms linked to the position of lncRNA relative to the coding gene illustrate how non-coding transcription controls gene expression. We review the biological significance of the act of lncRNA transcription on DNA processing, highlighting common themes, such as mediating cellular responses to environmental changes. This review presents the background in chromatin signaling to appreciate examples in different organisms where we can interpret functions of non-coding DNA through the act of RNAPII transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.