The molecular mechanisms that produce the full array of neuronal subtypes in the vertebrate nervous system are incompletely understood. Here, we provide evidence of a global temporal patterning program comprising sets of transcription factors that stratifies neurons based on the developmental time at which they are generated. This transcriptional code acts throughout the central nervous system, in parallel to spatial patterning, thereby increasing the diversity of neurons generated along the neuraxis. We further demonstrate that this temporal program operates in stem cell−derived neurons and is under the control of the TGFβ signaling pathway. Targeted perturbation of components of the temporal program, Nfia and Nfib, reveals their functional requirement for the generation of late-born neuronal subtypes. Together, our results provide evidence for the existence of a previously unappreciated global temporal transcriptional program of neuronal subtype identity and suggest that the integration of spatial and temporal patterning mechanisms diversifies and organizes neuronal subtypes in the vertebrate nervous system.
In many developing tissues the patterns of gene expression that assign cell fate are organised by secreted signals functioning in a graded manner over multiple cell diameters. Cis Regulatory Elements (CREs) interpret these graded inputs to control gene expression. How this is accomplished remains poorly understood. In the neural tube, a gradient of the morphogen Sonic hedgehog allocates neural progenitor identity. Here, we uncover two distinct ways in which CREs translate graded Shh signaling into differential gene expression. In the majority of ventral neural progenitors a common set of CREs are used to control gene activity. These CREs integrate cell type specific inputs to control gene expression. By contrast, the most ventral progenitors use a unique set of CREs. These are established by the pioneer factor FOXA2, paralleling the role of FOXA2 in endoderm. Moreover, FOXA2 binds a subset of the same sites in neural and endoderm cells. Together the data identify distinct cis regulatory strategies for the interpretation of morphogen signaling and raise the possibility of an evolutionarily conserved role for FOXA2-mediated regulatory strategy across tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.