ABSTRACTCryptococcus gattiiis the main pathogen of cryptococcosis in healthy patients and is treated mainly with fluconazole and amphotericin B. The combination of these drugs has been questioned because the mechanisms of action could lead to a theoretical antagonistic interaction. We evaluated distinct parameters involved in thein vitrocombination of fluconazole and amphotericin B againstCryptococcus gattii. Fourteen strains ofC. gattiiwere used for the determination of MIC, fractional inhibitory concentration, time-kill curve, and postantifungal effect (PAFE). Ergosterol quantification was performed to evaluate the influence of ergosterol content on the interaction between these antifungals. Interaction between the drugs varied from synergistic to antagonistic depending on the strain and concentration tested. Increasing fluconazole levels were correlated with an antagonistic interaction. A total of 48 h was necessary for reducing the fungal viability in the presence of fluconazole, while 12 h were required for amphotericin B. When these antifungals were tested in combination, fluconazole impaired the amphotericin B activity. The ergosterol content decreased with the increase of fluconazole levels and it was correlated with the lower activity of amphotericin B. The PAFE found varied from 1 to 4 h for fluconazole and from 1 to 3 h for amphotericin B. The interaction of fluconazole and amphotericin B was concentration-dependent and special attention should be directed when these drugs are used in combination againstC. gattii.
Liposomes are lipid vesicles widely used as nanocarriers in targeted drug delivery systems for therapeutic and/or diagnostic purposes. A strategy to prolong the blood circulation time of the liposomes includes the addition of a hydrophilic polymer polyethylene glycol (PEG) moiety onto the surface of the vesicle. Several studies claim that liposome PEGylation by a single chain length or a combination of PEG with different chain lengths may alter the liposomes' pharmacokinetic properties. Therefore, the purpose of this study was to evaluate the influence of PEG on the biodistribution of pH-sensitive liposomes in a tumor-bearing animal model. Three liposomal formulations (PEGylated or not) were prepared and validated to have a similar mean diameter, monodisperse distribution, and neutral zeta potential. The pharmacokinetic properties of each liposome were evaluated in healthy animals, while the biodistribution and scintigraphic images were evaluated in tumor-bearing mice. High tumor-to-muscle ratios were not statistically different between the PEGylated and non-PEGylated liposomes. While PEGylation is a well-established strategy for increasing the blood circulation of nanostructures, in our study, the use of polymer coating did not result in a better in vivo profile. Further studies must be carried out to confirm the feasibility of the non-PEGylated pH-sensitive liposomes for tumor treatment.
A sensitive and fast high-performance liquid chromatography-electrospray ionization-MS/MS method for the simultaneous quantitation of levodopa and carbidopa in human plasma was developed and validated. A simple protein precipitation step with perchloric acid was used for the cleanup of plasma, and methyldopa was added as an internal standard. The analyses were carried out using an ACE C(18) column (50 × 4.6 mm i.d.; 5 µm particle size) and a mobile phase consisting of 0.2% formic acid and acetonitrile (90:10). The triple-quadrupole mass spectrometer equipped with an electrospray source in positive mode was set up in the selective reaction monitoring mode to detect the ion transitions m/z 198.1 → m/z 107.0, m/z 227.2 → m/z 181.0, and m/z 212.1 → m/z 139.2 for levodopa, carbidopa, and methyldopa, respectively. The method was validated and proved to be linear, accurate, and precise over the range 50-5000 ng/mL for levodopa and 3-600 ng/mL for carbidopa. The proposed method was successfully applied in a pharmacokinetic study with a levodopa/carbidopa tablet formulation in healthy volunteers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.