Thrombospondin-related adhesive protein (TRAP) is essential for sporozoite motility and the invasion of mosquitoes' salivary gland and vertebrate's hepatocyte and is, thus, considered a promising pre-erythrocytic vaccine candidate. Despite the existence of a few reports on naturally acquired immune response against Plasmodium vivax TRAP (PvTRAP), it has never been explored so far in the Amazon region, so results are conflicting. Here, we characterized the (IgG and IgG subclass) antibody reactivity against recombinant PvTRAP in a cross-sectional study of 299 individuals exposed to malaria infection in three municipalities (Cruzeiro do Sul, Mâncio Lima and Guajará) from the Acre state of the Brazilian Amazon. In addition, the full PvTRAP sequence was screened for B-cell epitopes using in silico and in vitro approaches. Firstly, we confirmed that PvTRAP is naturally immunogenic in the cohort population since 49% of the individuals were IgG-responders to it. The observed immune responses were mainly driven by cytophilic IgG1 over all other sublcasses and the IgG levels that was corelated with age and time of residence in the studied area (p < 0.05). Interestingly, only the levels of specific anti-TRAP IgG3 seemed to be associated with protection, as IgG3 responders presented a significantly higher time elapse since the last malaria episode than those recorded for IgG3 non-responders. Regarding the B-cell epitope mapping, among the 148 responders to PvTRAP, four predicted epitopes were confirmed by recognition of antibodies (PvTRAPR197−H227; PvTRAPE237−T258; PvTRAPP344−G374; and PvTRAPE439−K454). Nevertheless, the frequency of responders against these peptides were low and did not show a clear correlation with the antibody response against the corresponding antigen. Moreover, none of the linear confirmed epitopes were located in the binding regions of PvTRAP in respect to the host cell ligand. Collectively, our data confirm the PvTRAP immunogenicity among Amazon inhabitants, while suggesting that the main important B-cell epitopes are not linear.
The cell-traversal protein for ookinetes and sporozoites (CelTOS), a highly conserved antigen involved in sporozoite motility, plays an important role in the traversal of host cells during the preerythrocytic stage of Plasmodium species. Recently, it has been considered an alternative target when designing novel antimalarial vaccines against Plasmodium falciparum. However, the potential of Plasmodium vivax CelTOS as a vaccine target is yet to be explored. This study evaluated the naturally acquired immune response against a recombinant P. vivax CelTOS (PvCelTOS) (IgG and IgG subclass) in 528 individuals from Brazilian Amazon, as well as the screening of B-cell epitopes in silico and peptide assays to associate the breadth of antibody responses of those individuals with exposition and/or protection correlates. We show that PvCelTOS is naturally immunogenic in Amazon inhabitants with 94 individuals (17.8%) showing specific IgG antibodies against the recombinant protein. Among responders, the IgG reactivity indexes (RIs) presented a direct correlation with the number of previous malaria episodes (p = 0.003; r = 0.315) and inverse correlation with the time elapsed from the last malaria episode (p = 0.031; r = −0.258). Interestingly, high responders to PvCelTOS (RI > 2) presented higher number of previous malaria episodes, frequency of recent malaria episodes, and ratio of cytophilic/non-cytophilic antibodies than low responders (RI < 2) and non-responders (RI < 1). Moreover, a high prevalence of the cytophilic antibody IgG1 over all other IgG subclasses (p < 0.0001) was observed. B-cell epitope mapping revealed five immunogenic regions in PvCelTOS, but no associations between the specific IgG response to peptides and exposure/protection parameters were found. However, the epitope (PvCelTOSI136-E143) was validated as a main linear B-cell epitope, as 92% of IgG responders to PvCelTOS were also responders to this peptide sequence. This study describes for the first time the natural immunogenicity of PvCelTOS in Amazon individuals and identifies immunogenic regions in a full-length protein. The IgG magnitude was mainly composed of cytophilic antibodies (IgG1) and associated with recent malaria episodes. The data presented in this paper add further evidence to consider PvCelTOS as a vaccine candidate.
Plasmodium vivax Merozoite Surface Protein-9 (PvMSP-9) is a malaria vaccine candidate naturally immunogenic in humans and able to induce high antibody titers in animals when delivered as a recombinant protein. Recently, we identified the sequence EAAPENAEPVHENA (PvMSP9 E795-A808) as the main linear B-cell epitope in naturally exposed individuals. However, the potential of PvMSP9 E795-A808 as an immunogen in experimental animal models remained unexplored. Here we assess the immunogenicity of PvMSP9 E795-A808 using synthetic peptides. The peptides tested in BALB/c mice include two repeats of the sequence EAAPENAEPVHENA tested alone (peptide RII), or linked to an autologous (PvMSP9 peptide pL; pLRII) or heterologous (p2 tetanus toxin universal T cell epitope; TTRII) T cell epitope. Immune responses were evaluated by ELISA, FLUOROSPOT, and indirect immunofluorescence. We show that all of the peptide constructs tested were immunogenic eliciting specific IgG antibodies at different levels, with a prevalence of IgG1 and IgG2. Animals immunized with synthetic peptides containing T cell epitopes (pLRII or TTRII) had more efficient antibody responses that resulted in higher antibody titers able to recognize the native protein by immunofluorescence. Relevantly, the frequency of IFN-c secreting SFC elicited by immunization with TTRII synthetic peptide was comparable to that reported to the PvMSP9-Nt recombinant protein. Taken together, our study indicates that PvMSP9 E795-A808 is highly immunogenic in mice and further studies to evaluate its value as promising vaccine target are warranted. Moreover, our study supports the critical role of CD4 T cell epitopes to enhance humoral responses induced by subunit based vaccines.
Circumsporozoite protein (CSP) variants of P. vivax , besides having variations in the protein repetitive portion, can differ from each other in aspects such as geographical distribution, intensity of transmission, vectorial competence and immune response. Such aspects must be considered to P. vivax vaccine development. Therefore, we evaluated the immunogenicity of novel recombinant proteins corresponding to each of the three P. vivax allelic variants (VK210, VK247 and P. vivax -like) and of the C-terminal region (shared by all PvCSP variants) in naturally malaria-exposed populations of Brazilian Amazon. Our results demonstrated that PvCSP-VK210 was the major target of humoral immune response in studied population, presenting higher frequency and magnitude of IgG response. The IgG subclass profile showed a prevalence of cytophilic antibodies (IgG1 and IgG3), that seem to have an essential role in protective immune response. Differently of PvCSP allelic variants, antibodies elicited against C-terminal region of protein did not correlate with epidemiological parameters, bringing additional evidence that humoral response against this protein region is not essential to protective immunity. Taken together, these findings increase the knowledge on serological response to distinct PvCSP allelic variants and may contribute to the development of a global and effective P. vivax vaccine.
Background Ozone is a molecule that plays an important role in dentistry, specially for wound healing. The aim of the present study was to clinically and immunologically evaluate the effect of ozonated oil on the healing of palatal wounds. Methods This is a prospective, longitudinal, triple‐blind, randomized, placebo‐controlled clinical trial. The groups were divided as follows: Test group (n = 14): after removal of the free gingival graft (FGG), the palatal wound was treated with ozonized seed sunflower oil with a peroxide index between 510 and 625 meq O2/kg; Control group (n = 14): after removal of the FGG, the palatal wound was treated with non‐ozonated sunflower oil (placebo). The treatments were applied three times a day, for 7 days. Results There were no significant differences in the measurements of wound area (mm2) between the test and control groups in the different periods evaluated (0, 3, 7, and 14 days; p > 0.05). The intra‐group analysis showed a significant decrease in wound size over the course of days (0, 3, 7, and 14 days; p < 0.05). Vascular endothelial growth factor (VEGF; pg/mL) presented a significant reduction at 7 days (p < 0.05) compared to day 3 in the test group (p < 0.05). There was a statistical difference for malondialdehyde (MDA; pg/mL) in the test group between 3 and 7 days post‐treatment (p < 0.05) and between test and control groups on the 7th day (p < 0.05). Conclusions The application of highly ozonated sunflower oil did not improve the remaining scar area of the palate, decreasing the VEGF and increasing the oxidative stress marker MDA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.