Several COVID-19 vaccines have shown good efficacy in clinical trials, but there remains uncertainty about the efficacy of vaccines against different variants. Here, we investigate the efficacy of ChAdOx1 nCoV-19 (AZD1222) against symptomatic COVID-19 in a post-hoc exploratory analysis of a Phase 3 randomised trial in Brazil (trial registration ISRCTN89951424). Nose and throat swabs were tested by PCR in symptomatic participants. Sequencing and genotyping of swabs were performed to determine the lineages of SARS-CoV-2 circulating during the study. Protection against any symptomatic COVID-19 caused by the Zeta (P.2) variant was assessed in 153 cases with vaccine efficacy (VE) of 69% (95% CI 55, 78). 49 cases of B.1.1.28 occurred and VE was 73% (46, 86). The Gamma (P.1) variant arose later in the trial and fewer cases (N = 18) were available for analysis. VE was 64% (−2, 87). ChAdOx1 nCoV-19 provided 95% protection (95% CI 61%, 99%) against hospitalisation due to COVID-19. In summary, we report that ChAdOx1 nCoV-19 protects against emerging variants in Brazil despite the presence of the spike protein mutation E484K.
BackgroundPatients with antibody deficiencies depend on the presence of a variety of antibody specificities in intravenous immunoglobulin (IVIG) to ensure continued protection against pathogens. Few studies have examined levels of antibodies to specific pathogens in IVIG preparations and little is known about the specific antibody levels in patients under regular IVIG treatment. The current study determined the range of antibodies to tetanus, diphtheria, measles and varicella in IVIG products and the levels of these antibodies in patients undergoing IVIG treatment.MethodsWe selected 21 patients with primary antibody deficiencies who were receiving regular therapy with IVIG. Over a period of one year, we collected four blood samples from each patient (every 3 months), immediately before immunoglobulin infusion. We also collected samples from the IVIG preparation the patients received the month prior to blood collection. Antibody levels to tetanus, diphtheria, measles and varicella virus were measured in plasma and IVIG samples. Total IgG levels were determined in plasma samples.ResultsAntibody levels to tetanus, diphtheria, varicella virus and measles showed considerable variation in different IVIG lots, but they were similar when compared between commercial preparations. All patients presented with protective levels of antibodies specific for tetanus, measles and varicella. Some patients had suboptimal diphtheria antibody levels. There was a significant correlation between serum and IVIG antibodies to all pathogens, except tetanus. There was a significant correlation between diphtheria and varicella antibodies with total IgG levels, but there was no significant correlation with antibodies to tetanus or measles.ConclusionsThe study confirmed the variation in specific antibody levels between batches of the same brand of IVIG. Apart from the most common infections to which these patients are susceptible, health care providers must be aware of other vaccine preventable diseases, which still exist globally.
SUMMARYWe describe the case of an eight-year-old boy with X-linked agammaglobulinemia who developed mild varicella despite regular intravenous immunoglobulin (IVIG) therapy. He maintained protective antibody levels against varicella and the previous batches of IVIG that he received had adequate varicella-specific IgG levels. The case illustrates that IVIG may not prevent VZV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.