BackgroundMultiple osteochondromas is a dysplasia characterized by growth of two or more osteochondromas. It is genetically heterogeneous, caused by pathogenic variants in EXT1 or EXT2 genes in 70%–90% of patients. The EXT1 is more often mutated than EXT2 gene, with a variable prevalence between populations. There are no data about EXT1 and EXT2 pathogenic variants in patients with multiple osteochondromas in Brazilian population. The aim of this survey is to characterize these to determine the genotype profile of this population.Methods
DNA sequencing (Sanger Method) and MLPA analysis were performed to identify point mutations and deletions/duplications in the sample of 153 patients in 114 families.ResultsGermline variants were identified in 83% of families in which EXT2 variants were detected in 46% and EXT1 in 37% of cases. No variants were detected in 17% of them. We identified 50 different variants, 33 (13 frameshift, 11 nonsense, 5 missense, 2 splice site mutation, and 2 large deletions) in EXT1 and 17 (6 frameshift, 6 splice site mutation, 3 nonsense, 1 missense, and 1 large deletion) in EXT2. Of all 50 variants, 31 (62%) were novel, including 20 out of 33 (60,6%) EXT1 and 11 out of 17 (64.7%) EXT2 alleles. The vast majority of variants (88%) were “loss‐of‐function” and two novel hotspots in EXT2 gene were observed in our study.ConclusionThe prevalence of variants detected in the EXT2 gene differs from other researches from Latin America, European, and Asian population. This uncommon prevalence could be related with the newly characterized variant hotspot sites detected in EXT2 gene (p.Ala409Profs*26 and p.Ser290*). A high number of novel variants were also identified indicating that Brazilian population has a unique genetic profile. Characterizing this population and establishing its genotype is essential to understand the molecular pathogenesis of this disease in Brazil.
Macrophagic myofasciitis (MMF) is an inflammatory myopathy related to aluminum-containing vaccines. Described in 1998, most cases were reported in adults, with only 22 cases being reported in children. Three children aged between 13 months and 3(1/2) years were investigated in our institution for neuromuscular symptoms. They underwent thorough clinical, familial, and laboratory investigations, electroneuromyography, muscle biopsy with transmission electron microscopy, scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), and, in one case, brain magnetic resonance imaging. They had received regular immunizations. Two patients were hypotonic and one presented with myotonia. Muscle biopsy of all patients presented macrophagic infiltrates with intracytoplasmic aluminum content as revealed by SEM/EDS analysis. Their diverse clinical picture does not support a direct relationship between local morphologic findings and systemic symptoms. The atypical clinical presentation of these children may not result from the superposition of MMF upon a background systemic neuromyopathy, suggesting instead that they are two coincident and independent conditions. Although the finding of macrophage infiltrates in muscle tissue is not new, the identification of aluminum content is recent. The use of tissue sections for aluminum detection and mapping by SEM/EDS is conclusive for, diagnosis; it has not been reported previously in a pathology journal, to the authors' knowledge.
Key Clinical MessageWe report a patient who was followed for a long time under an ectrodactyly ectodermal dysplasia‐clefting (EEC) syndrome and was subsequently diagnosed with a 19q13.11 microdeletion. After a review of the related literature, we suggest testing patients with EEC for 19q13.11 microdeletion and include WTIP and UBA2 to a minimal overlapping region.
Congenital disorders of glycosylation type 1 (CDG-I) comprise a group of 27 genetic defects with heterogeneous multisystem phenotype, mostly presenting with nonspecific neurological symptoms. The biochemical hallmark of CDG-I is a partial absence of complete N-glycans on transferrin. However,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.