A scalar field, η(r), is coupled to the skyrmion. Its classical value in the vacuum ("condensate") reduces to the pion decay constant, f π , being thus proportional to the chiral condensate
No abstract
The crystal and local atomic structure of monoclinic ReO2 (alpha-ReO2) under hydrostatic pressure up to 1.2 GPa was investigated for the first time using both X-ray absorption spectroscopy and high-resolution synchrotron X-ray powder diffraction and a home-built B4C anvil pressure cell developed for this purpose. Extended X-ray absorption fine-structure (EXAFS) data analysis at pressures from ambient up to 1.2 GPa indicates that there are two distinct Re-Re distances and a distorted ReO6 octahedron in the alpha-ReO2 structure. X-ray diffraction analysis at ambient pressure revealed an unambiguous solution for the crystal structure of the alpha-phase, demonstrating a modulation of the Re-Re distances. The relatively small portion of the diffraction pattern accessed in the pressure-dependent measurements does not allow for a detailed study of the crystal structure of alpha-ReO2 under pressure. Nonetheless, a shift and reduction in the (011) Bragg peak intensity between 0.4 and 1.2 GPa is observed, with correlation to a decrease in Re-Re distance modulation, as confirmed by EXAFS analysis in the same pressure range. This behavior reveals that alpha-ReO2 is a possible inner pressure gauge for future experiments up to 1.2 GPa.
ReO 2 presents two crystalline variants, with monoclinic and orthorhombic structures. The former is metastable and irreversibly transforms to an orthorhombic structure above 460 o C. The structure of the latter was determined from studies on monocrystalline samples, whereas for the monoclinic variant there are no single crystals available so far. It was found only one monoclinic variant and the structure associated with this variant is based on studies on polycrystals. We analyzed a monoclinic oxide powder sample by X-ray diffraction and refined its pattern by means of the Rietveld Method. We obtained that the monoclinic variant belongs to space group P 21/c, with lattice parameters a = 5.615(3), b = 4.782(2), c = 5.574(2)Å, β = 120.13 (1) o .
The Ca2Mn1Re1O6 double perovskite has been prepared in polycrystalline form by using the encapsulated quartz tube method. The partial oxygen pressure inside the quartz tube revealed this to be a crucial synthesis parameter for the production of a single structural phase sample. This parameter was controlled using the ratio between ReO2 and ReO3 content and the filling factor parameter (ratio between mass and total inner volume of the quartz tube). The morphology and chemical composition was investigated by scanning electron microscopy and energy dispersive X-ray spectroscopy. The crystal structure parameters were determined by analysis of the synchrotron high-resolution X-ray powder diffraction pattern. The analysis indicates that the sample is an ideal single-phase compound with a monoclinic crystal structure (space group P2(1)/n) with a = 5.44445(2) Å; b = 5.63957(3) Å; c = 7.77524(3) Å; and β = 90.18(1)º. Computer simulations were performed considering two cation valence configurations, namely, (i) Mn2+Re6+ or (ii) Mn3+Re5+, for the Ca2Mn1Re1O6 compound. XANES analysis measurements indicated +2.3 for the average valence of Mn (a mixture of Mn2+ and Mn3+) and +5.7 for the effective valence of Re (an intermediate valence between Re4+ (ReO2) and Re6+ (ReO3)). As a summary, we concluded there is a mixed valence configuration for Mn and Re in Ca2Mn1Re1O6 , taken into account the oxygen content of 6.0±0.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.