Adenoviruses represent exceptional candidates for wide-ranging therapeutic applications, from vectors for gene therapy to oncolytics for cancer treatments. The first ever commercial gene therapy medicine was based on a recombinant adenovirus vector, while most recently, adenoviral vectors have proven critical as vaccine platforms in effectively controlling the global coronavirus pandemic. Here, we discuss factors involved in adenovirus cell binding, entry, and trafficking; how they influence efficiency of adenovirus-based vectors; and how they can be manipulated to enhance efficacy of genetically modified adenoviral variants. We focus particularly on endocytosis and how different adenovirus serotypes employ different endocytic pathways to gain cell entry, and thus, have different intracellular trafficking pathways that subsequently trigger different host antiviral responses. In the context of gene therapy, the final goal of the adenovirus vector is to efficiently deliver therapeutic transgenes into the target cell nucleus, thus allowing its functional expression. Aberrant or inefficient endocytosis can impede this goal, therefore, it should be considered when designing and constructing adenovirus-based vectors.
Newly designed and synthesized diarylethene (DAE) derivatives with aliphatic amine sidearms and one with two pyrenes, revealed excellent photo-switching property of central DAE core in MeOH and water. The only exception was bis-pyrene analogue, its DAE core very readily photochemically closed, but reversible opening completely hampered by aromatic stacking interaction of pyrene(s) with cyclic DAE. In this process, pyrene fluorescence showed to be a reliable monitoring method, an open form characterized by strong emission at 480 nm (typical for pyrene-aggregate), while closed form emitted weakly at 400 nm (typical for pyrene-DAE quenching). Only open DAE-bis-pyrene form interacted measurably with ds-DNA/RNA by flexible insertion in polynucleotide grooves, while self-stacked closed form did not bind to DNA/RNA. For the same steric reasons, flexible open DAE-bis-pyrene form was bound to at least three different binding sites at bovine serum albumin (BSA), while rigid, self-stacked closed form interacted dominantly with only one BSA site. Preliminary screening of antiproliferative activity against human lung carcinoma cell line A549 revealed that all DAE-derivatives are non-toxic. However, bis-pyrene analogue efficiently entered cells and located in the cytoplasm, whereby irradiation by light (315–400 nm) resulted in a strong, photo-induced cytotoxic effect, typical for pyrene-related singlet oxygen species production.
The 2- and 2,7- substituted para-N-methylpyridinium pyrene cations show high-affinity intercalation into ds-DNAs, whereas their non-methylated analogues interacted with ds-DNA/RNA only in the protonated form (at pH 5), but not at physiological conditions (pH 7). The fluorescence from non-methylated analogues was strongly dependent on the protonation of the pyridines; consequently, they act as fluorescence ratiometric probes for simultaneous detection of both ds-DNA and BSA at pH 5, relying on the ratio between intensities at 420 nm (BSA specific) and 520 nm (DNA specific), whereby exclusively ds-DNA sensing could be switched-off by adjustment to pH 7. Only methylated, permanently charged pyrenes show photoinduced cleavage of circular DNA, attributed to pyrene-mediated irradiation-induced production of singlet oxygen. Consequently, the moderate toxicity of these cations against human cell lines is strongly increased upon irradiation. Detailed studies revealed increased total ROS production in cells treated by the compounds studied, accompanied by cell swelling and augmentation of cellular complexity. The most photo-active 2-para-N-methylpyridinium pyrene showed significant localization at mitochondria, its photo-bioactivity likely due to mitochondrial DNA damage. Other derivatives were mostly non-selectively distributed between various cytoplasmic organelles, thus being less photoactive.
The low seroprevalent human adenovirus type 26 (HAdV26)-based vaccine vector was the first adenovirus-based vector to receive marketing authorization from European Commission. HAdV26-based vaccine vectors induce durable humoral and cellular immune responses and, as such, represent a highly valuable tool for fighting infectious diseases. Despite well-described immunogenicity in vivo, the basic biology of HAdV26 still needs some refinement. The aim of this study was to determine the pro-inflammatory cytokine profile of epithelial cells infected with HAdV26 and then investigate the underlying molecular mechanism. The expression of studied genes and proteins was assessed by quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Confocal microscopy was used to visualize HAdV26 cell uptake. We found that HAdV26 infection in human epithelial cells triggers the expression of pro-inflammatory cytokines and chemokines, namely IL-6, IL-8, IL-1β, and TNF-α, with the most pronounced difference shown for IL-6. We investigated the underlying molecular mechanism and observed that HAdV26-induced IL-6 gene expression is αvβ3 integrin dependent and NF-κB mediated. Our findings provide new data regarding pro-inflammatory cytokine and chemokine expression in HAdV26-infected epithelial cells, as well as details concerning HAdV26-induced host signaling pathways. Information obtained within this research increases our current knowledge of HAdV26 basic biology and, as such, can contribute to further development of HAdV26-based vaccine vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.