Donor human milk (DHM) is the recommended alternative, if maternal milk is unavailable. However, current human milk banking practices may negatively affect the nutritional quality of DHM. This review summarises the effects of these practices on polyunsaturated fatty acids, lipid mediators and antioxidants of human milk. Overall, there is considerable variation in the reported effects, and further research is needed, particularly with lipid mediators and antioxidants. However, to preserve nutritional quality, DHM should be protected from light exposure and storage at 4°C minimised, to prevent decreases in vitamin C and endocannabinoids and increases in free fatty acids and lipid peroxidation products. Storage at -20°C prior to pasteurisation should also be minimised, to prevent free fatty increases and total fat and endocannabinoid decreases. Storage ≤-70°C is preferable wherever possible, although post-pasteurisation storage at -20°C for three months appears safe for free fatty acids, lipid peroxidation products, and total fat content.
Background: Donor human milk (DHM) is used as alternative to maternal milk to feed preterm infants; however, it may provide less long-chain (LC) polyunsaturated fatty acids (PUFAs) and more oxidized lipids, which may be detrimental to preterm infant health and development. Levels have not been reported for DHM in the United Kingdom. Methods: DHM (n = 19) from 2 neonatal units, preterm milk from a neonatal unit (n = 10), and term milk from the community (n = 11) were analyzed for fatty acids, malondialdehyde, 4-hydroxy-2-nonenal, and hexanal. Study registration: NCT03573531. Results: DHM had significantly lower absolute LCPUFA content than term (P < .001) and significantly lower ω-3 PUFAs than preterm milk (P < .05), although relative LCPUFA composition did not differ. Exclusive DHM feeding leads to significantly lower fat (3.7 vs 6.7 g/d) and LCPUFA (docosahexaenoic acid [DHA]: 10.6 vs 16.8 mg/d; arachidonic acid [ARA]: 17.4 vs 25.2 mg/d) intake than recommended by the European Society for Pediatric Gastroenterology, Hepatology and Nutrition, and provides 17.3% and 43.1% of the in utero accreted ARA and DHA. DHM had the highest proportion of lipid peroxidation. Conclusions: This study confirms that DHM in the United Kingdom has insufficient LCPUFAs for preterm infants. It demonstrates for the first time that DHM has the highest level of lipid peroxidation, compared with preterm or term milk. This has important implications for preterm infant nutrition, as exclusive DHM feeding might not be suitable long term and may contribute to the development of major preterm neonatal morbidities.
Perinatal hypoxia-ischemia (HI) is a major cause of neonatal brain injury, leading to long-term neurological impairments. Medical nutrition can be rapidly implemented in the clinic, making it a viable intervention to improve neurodevelopment after injury. The omega-3 (n-3) fatty acids docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3), uridine monophosphate (UMP) and choline have previously been shown in rodents to synergistically enhance brain phospholipids, synaptic components and cognitive performance. The objective of this study was to test the efficacy of an experimental diet containing DHA, EPA, UMP, choline, iodide, zinc, and vitamin B12 in a mouse model of perinatal HI. Male and female C57Bl/6 mice received the experimental diet or an isocaloric control diet from birth. Hypoxic ischemic encephalopathy was induced on postnatal day 9 by ligation of the right common carotid artery and systemic hypoxia. To assess the effects of the experimental diet on long-term motor and cognitive outcome, mice were subjected to a behavioral test battery. Lesion size, neuroinflammation, brain fatty acids and phospholipids were analyzed at 15 weeks after HI. The experimental diet reduced lesion size and neuroinflammation specifically in males. In both sexes, brain n-3 fatty acids were increased after receiving the experimental diet. The experimental diet also improved novel object recognition, but no significant effects on motor performance were observed. Current data indicates that early life nutritional supplementation with a combination of DHA, EPA, UMP, choline, iodide, zinc, and vitamin B12 may provide neuroprotection after perinatal HI.
Background: Hypoxic-ischemic encephalopathy (HIE) is associated with brain injury in newborns, and may lead to disability or death. Mild therapeutic hypothermia (TH) is an effective neuroprotective intervention and an established standard of care in western countries. The gut microbiome, the genomic and physico-chemical contribution of the gut microbiota, serves important functions and is increasingly recognised as a major influencer on development. The impact of HIE and TH on the evolving gut microbiota of the newborn remains to be elucidated. Objective: To carry out an exploratory study on the effects of HIE and TH on the gut microbiome in term neonates. Methods and Results: Stool samples were obtained from 28 newborns with HIE (median age 68 h) undergoing TH on the neonatal unit (HIE TH group), with a follow-on stool sample available for 20 of these babies (median age 151 h). For comparison, a single stool specimen was obtained from 19 healthy newborns on the postnatal ward (median age 34 h). The microbiota composition was determined using established microbial DNA extraction and 16S rRNA gene sequencing methodology. There was no difference in the mode of delivery or the method of feeding the newborns, once established, between the two groups. All the infants in the HIE TH group had received antibiotics compared to only one of the controls. A lower -diversity, quantified by the Shannon diversity index, was noted in the microbiota of the HIE TH group in comparison to the control group. The HIE TH group had a higher mean relative abundance (MRA) of facultative anaerobes and aerobes such as Staphylococcus species and a lower MRA of strict anaerobes, such as members of the Bacteroides genus, compared to the control. Also, there was a significant reduction in the MRA of the genus Bifidobacterium in the HIE TH group. Although the mode of delivery exerts a profound influence on the gut microbiota of the newborn, distance-based redundancy analysis showed that TH may exert an independent influence. This study could not determine the independent contribution of the use of antibiotics or the NICU environment. Conclusion: In this study we demonstrate an alteration in the microbiota composition in newborns undergoing TH for HIE. (359 words)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.