The RUNX1/ETO (RE) fusion protein, which originates from the t(8;21) chromosomal rearrangement, is one of the most frequent translocation products found in de novo acute myeloid leukemia (AML). In RE leukemias, activated forms of the c-KIT tyrosine kinase receptor are frequently found, thereby suggesting oncogenic cooperativity between these oncoproteins in the development and maintenance of t(8;21) malignancies. In this report, we show that activated c-KIT cooperates with a C-terminal truncated variant of RE, REtr, to expand human CD34+ hematopoietic progenitors ex vivo. CD34+ cells expressing both oncogenes resemble the AML-M2 myeloblastic cell phenotype, in contrast to REtr-expressing cells which largely undergo granulocytic differentiation. Oncogenic c-KIT amplifies REtr-depended clonogenic growth and protects cells from exhaustion. Activated c-KIT reverts REtr-induced DNA damage and apoptosis. In the presence of activated c-KIT, REtr-downregulated DNA-repair genes are re-expressed leading to an enhancement of DNA-repair efficiency via homologous recombination. Together, our results provide new mechanistic insight into REtr and c-KIT oncogenic cooperativity and suggest that augmented DNA repair accounts for the increased chemoresistance observed in t(8;21)-positive AML patients with activated c-KIT mutations. This cell-protective mechanism might represent a new therapeutic target, as REtr cells with activated c-KIT are highly sensitive to pharmacological inhibitors of DNA repair.
Transcription is a tightly regulated process ensuring the proper expression of numerous genes regulating all aspects of cellular behavior. Transcription factors regulate multiple genes including other transcription factors that together control a highly complex gene network. The transcriptional machinery can be “hijacked” by oncogenic transcription factors, thereby leading to malignant cell transformation. Oncogenic transcription factors manipulate a variety of epigenetic control mechanisms to fulfill gene regulatory and cell transforming functions. These factors assemble epigenetic regulators at target gene promoter sequences, thereby disturbing physiological gene expression patterns. Retroviral vector technology and the availability of “healthy” human hematopoietic CD34+ progenitor cells enable the generation of pre-leukemic cell models for the analysis of aberrant human hematopoietic progenitor cell expansion mediated by leukemogenic transcription factors. This review summarizes recent findings regarding the mechanism by which leukemogenic gene products control human hematopoietic CD34+ progenitor cell expansion by disrupting the normal epigenetic program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.