Background Focal segmental glomerulosclerosis (FSGS) is a kidney disease that presents with nephrotic syndrome and is often resistant to glucocorticosteroids and progresses to end-stage kidney disease in 50–70% of patients. Genetic studies in familial FSGS indicate that it is a disease of the podocytes, major components of the glomerular filtration barrier. However the molecular cause of over half of primary FSGS is unknown, and effective treatments have been elusive. Methods We performed whole-genome linkage analysis followed by high-throughput sequencing of the positive linkage area in a family with autosomal recessive FSGS and sequenced a newly discovered gene in 52 unrelated FSGS patients. Immunohistochemistry was performed in human kidney biopsies and cultured podocytes. Expression studies in vitro were performed to characterize the functional consequences of the mutations identified. Results Two mutations (A159P and Y695X) in MYO1E, encoding the non-muscle class I myosin, myosin 1E (Myo1E), which segregated with FSGS in two independent pedigrees were identified. Patients were homozygous for the mutations and were resistant to glucocorticosteroids. Electron microscopy showed thickening and disorganization of the glomerular basement membrane. Normal expression of Myo1E was documented in control human kidney biopsies in vivo and in glomerular podocytes in vitro. Transfection studies revealed abnormal subcellular localization and function of A159P-Myo1E mutant. The Y695X mutation causes loss of calmodulin binding and the tail domains of Myo1E. Conclusions MYO1E mutations lead to childhood onset steroid-resistant FSGS. These data support a role of Myo1E in podocyte function and the consequent integrity of the glomerular permselectivity barrier.
Background: Virus-associated cell membrane proteins acquired by HIV-1 during budding may give information on the cellular source of circulating virions. In the present study, by applying immunosorting of the virus and of the cells with antibodies targeting monocyte (CD36) and lymphocyte (CD26) markers, it was possible to directly compare HIV-1 quasispecies archived in circulating monocytes and T lymphocytes with that present in plasma virions originated from the same cell types. Five chronically HIV-1 infected patients who underwent therapy interruption after prolonged HAART were enrolled in the study. The analysis was performed by the powerful technology of ultra-deep pyrosequencing after PCR amplification of part of the env gene, coding for the viral glycoprotein (gp) 120, encompassing the tropism-related V3 loop region. V3 amino acid sequences were used to establish heterogeneity parameters, to build phylogenetic trees and to predict co-receptor usage.
Variability in the performance of nucleic acid amplification technology (NAT)-based assays presents a significant problem in the diagnosis and management of human cytomegalovirus (HCMV) infections. Here we describe a collaborative study to evaluate the suitability of candidate reference materials to harmonize HCMV viral load measurements in a wide range of NAT assays. Candidate materials comprised lyophilized Merlin virus, liquid Merlin virus, liquid AD169 virus, and purified HCMV Merlin DNA cloned into a bacterial artificial chromosome. Variability in the laboratory mean HCMV concentrations determined for virus samples across the different assays was 2 log10. Variability for the purified DNA sample was higher (>3 log10). The agreement between laboratories was markedly improved when the potencies of the liquid virus samples were expressed relative to the lyophilized virus candidate. In contrast, the agreement between laboratories for the purified DNA sample was not improved. Results indicated the suitability of the lyophilized Merlin virus preparation as the 1st WHO International Standard for HCMV for NAT. It was established in October 2010, with an assigned potency of 5 × 10(6) International Units (IU) (NIBSC code 09/162). It is intended to be used to calibrate secondary references, used in HCMV NAT assays, in IU.
Transplantation activity is increasing, leading to a growing number of patients at risk for toxoplasmosis. We reviewed toxoplasmosis prevention practices, prevalence, and outcomes for hematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT; heart, kidney, or liver) patients in Europe. We collected electronic data on the transplant population and prevention guidelines/regulations and clinical data on toxoplasmosis cases diagnosed during 2010–2014. Serologic pretransplant screening of allo-hematopoietic stem cell donors was performed in 80% of countries, screening of organ donors in 100%. SOT recipients were systematically screened in 6 countries. Targeted anti-Toxoplasma chemoprophylaxis was heterogeneous. A total of 87 toxoplasmosis cases were recorded (58 allo-HSCTs, 29 SOTs). The 6-month survival rate was lower among Toxoplasma-seropositive recipients and among allo-hematopoietic stem cell and liver recipients. Chemoprophylaxis improved outcomes for SOT recipients. Toxoplasmosis remains associated with high mortality rates among transplant recipients. Guidelines are urgently needed to standardize prophylactic regimens and optimize patient management.
Background: Epidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information. Methods: We investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV-host interactome was carried out in order to provide a theoretic host-pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein-protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. Results: Although the amino acid sequences of the S-glycoprotein were found to be different between the various HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and chemokines. Conclusions: In this paper, we developed a network-based model with the aim to define molecular aspects of pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided pharmaceutical and diagnostic research with the prospect to identify potential new biological targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.