Coriander seeds have high socio-economic value in several regions of Brazil, especially in the North and Northeast. Seed maturation determined by color influences the seed quality. With this, digital image processing has become an important tool for separating seeds by color since this classification is usually performed by humans and is highly susceptible to error. The study established parameters for separating coriander seeds by red green and blue (RGB) image analysis, seeking a better selection of coriander seeds according to their color, and evaluating the physiological quality by the germination test. Separation was carried out from two coriander seed lots to obtain samples of 20 g each in three shades: yellowish, gray, and mixed. Images were acquired by the HP C4480 Scanner and processed in the MATLAB software; then, a histogram was constructed for each color analyzed in each sample by the RGB system. ANOVA tested the averages of the scales to ratify the difference in the components’ distributions. The germination test was performed to confirm the results of seed separation using image analysis. The best selection of coriander seeds was achieved by the blue scale, and the germination test indicated that yellow seeds have a higher physiological quality than brownish/greyish seeds.
In the quality analysis, alternatives for seed imaging are a quick response to something challenging and laborious. However, machine learning techniques emerge as an alternative for prediction and classification by image processing, with efficiency and speed of results under control of quality at the post-seed harvest stages. The objective was to report the insertion of image processing with artificial intelligence in the seed area. Various machine learning models are purposes of the investigation to improve the responses of laborious and data-intensive targets. Deep learning studies in seeds offer promising results and have great potential.
Fomos acometidos por uma pandemia de um novo vírus, o qual pertence à família do Coronavírus, que causa infecções respiratórias. Desde que a situação de isolamento social impôs às pessoas o distanciamento físico, isso afetou diretamente toda a esfera universitária, que teve suas atividades suspensas, surgindo, assim, a necessidade de se encontrar um meio de reordenar suas atividades acadêmicas até voltar à sua normalidade. Com isso, o Laboratório de Agrotecnologia do Centro de Engenharias da Universidade Federal de Pelotas, que tem por finalidade realizar pesquisas científicas relacionadas ao setor agrícola, uniu a importância do agronegócio para a sociedade em situação de isolamento social, com o intuito de transmitir o conhecimento através das Aulas Abertas pelas redes sociais, sendo escolhida a plataforma Instagram, por meio de aulas ao vivo semanais com assuntos variados associados à agropecuária. Após, foi criado um canal na plataforma Youtube para que o registro não se perdesse, o que resultou em mais de doze aulas, com mais de 1.947 visualizações ao vivo, além das visualizações do Youtube.
Esta obra está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional (CC BY 4.0). O conteúdo desta obra e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.