Acetogenic bacteria can convert waste gases into fuels and chemicals. Design of bioprocesses for waste carbon valorization requires quantification of steady-state carbon flows. Here, steady-state quantification of autotrophic chemostats containing Clostridium autoethanogenum grown on CO 2 and H 2 revealed that captured carbon (460 ± 80 mmol/gDCW/day) had a significant distribution to ethanol (54 ± 3 C-mol% with a 2.4 ± 0.3 g/L titer). We were impressed with this initial result, but also observed limitations to biomass concentration and growth rate. Metabolic modeling predicted culture performance and indicated significant metabolic adjustments when compared to fermentation with CO as the carbon source. Moreover, modeling highlighted flux to pyruvate, and subsequently reduced ferredoxin, as a target for improving CO 2 and H 2 fermentation. Supplementation with a small amount of CO enabled co-utilization with CO 2 , and enhanced CO 2 fermentation performance significantly, while maintaining an industrially relevant product profile. Additionally, the highest specific flux through the Wood-Ljungdahl pathway was observed during co-utilization of CO 2 and CO. Furthermore, the addition of CO led to superior CO 2-valorizing characteristics (9.7 ± 0.4 g/L ethanol with a 66 ± 2 C-mol% distribution, and 540 ± 20 mmol CO 2 /gDCW/day). Similar industrial processes are commercial or currently being scaled up, indicating CO-supplemented CO 2 and H 2 fermentation has high potential for sustainable fuel and chemical production. This work also provides a reference dataset to advance our understanding of CO 2 gas fermentation, which can contribute to mitigating climate change.
Acetogenic bacteria are rising in popularity as chassis microbes in biotechnology due to their capability of converting inorganic one-carbon (C1) gases to organic chemicals. To fully uncover the potential of acetogenic bacteria, synthetic-biology tools are imperative to either engineer designed functions or to interrogate the physiology. Here, we report a genome-editing tool at a one-nucleotide resolution, namely base editing, for acetogenic bacteria based on CRISPR-targeted deamination. This tool combines nuclease deactivated Cas9 with activation-induced cytidine deaminase to enable cytosine-tothymine substitution without DNA cleavage, homology-directed repair, and donor DNA, which are generally the bottlenecks for applying conventional CRISPR-Cas systems in bacteria. We designed and validated a modularized base-editing tool in the model acetogenic bacterium Clostridium ljungdahlii. The editing principles were investigated, and an in-silico analysis revealed the capability of base editing across the genome. Moreover, genes related to acetate and ethanol production were disrupted individually by installing premature STOP codons to reprogram carbon flux towards improved acetate production. This resulted in engineered C. ljungdahlii strains with the desired phenotypes and stable genotypes. Our base-editing tool promotes the application and research in acetogenic bacteria and provides a blueprint to upgrade CRISPR-Cas-based genome editing in bacteria in general.
20Acetogenic bacteria can convert waste gases into fuels and chemicals. Design of 21 bioprocesses for waste carbon valorization requires quantification of steady-state carbon 22 flows. Here, steady-state quantification of autotrophic chemostats containing 23Clostridium autoethanogenum grown on CO2 and H2 revealed that captured carbon (460 24 ± 80 mmol/gDCW/day) had a significant distribution to ethanol (54 ± 3 mol% with a 252.4 ± 0.3 g/L titer). We were impressed with this initial result, but also observed 26 limitations to biomass concentration and growth rate. Metabolic modelling predicted 27 culture performance and indicated significant metabolic adjustments when compared to 28 fermentation with CO as the carbon source. Moreover, modelling highlighted flux to 29 pyruvate, and subsequently reduced ferredoxin, as a target for improving CO2 and H2 30 fermentation. Supplementation with a small amount of CO enabled co-utilisation with 31 CO2, and enhanced CO2 fermentation performance significantly, while maintaining an 32 industrially relevant product profile. Additionally, the highest specific flux through the 33 Wood-Ljungdahl pathway was observed during co-utilization of CO2 and CO.
Acetogenic bacteria are rising in popularity as chassis microbes in biotechnology due to their capability of converting inorganic one-carbon (C1) gases to organic chemicals. To fully uncover the potential of acetogenic bacteria, synthetic-biology tools are imperative to either engineer designed functions or to interrogate the physiology. Here, we report a genome-editing tool at a one-nucleotide resolution, namely base editing, for acetogenic bacteria based on CRISPR-targeted deamination. This tool combines nuclease deactivated Cas9 with activation-induced cytidine deaminase to enable cytosine-tothymine substitution without DNA cleavage, homology-directed repair, and donor DNA, which are generally the bottlenecks for applying conventional CRISPR-Cas systems in bacteria. We designed and validated a modularized base-editing tool in the model acetogenic bacterium Clostridium ljungdahlii. The editing principles were investigated, and an in-silico analysis revealed the capability of base editing across the genome.Moreover, genes related to acetate and ethanol production were disrupted individually by installing premature STOP codons to reprogram carbon flux towards improved acetate production. This resulted in engineered C. ljungdahlii strains with the desired phenotypes and stable genotypes. Our base-editing tool promotes the application and research in acetogenic bacteria and provides a blueprint to upgrade CRISPR-Cas-based genome editing in bacteria in general. SignificanceAcetogenic bacteria metabolize one-carbon (C1) gases, such as industrial waste gases, to produce fuels and commodity chemicals. However, the lack of efficient genemanipulation approaches hampers faster progress in the application of acetogenic bacteria in biotechnology. We developed a CRISPR-targeted base-editing tool at a onenucleotide resolution for acetogenic bacteria. Our tool illustrates great potential in engineering other A-T-rich bacteria and links designed single-nucleotide variations with biotechnology. It provides unique advantages for engineering industrially relevant bacteria without creating genetically modified organisms (GMOs) under the legislation of many countries. This base-editing tool provides an example for adapting CRISPR-Cas systems in bacteria, especially those that are highly sensitive to heterologously expressed Cas proteins and have limited ability of receiving foreign DNA.
Methanogenesis allows methanogenic archaea (methanogens) to generate cellular energy for their growth while producing methane. Hydrogenotrophic methanogens thrive on carbon dioxide and molecular hydrogen as sole carbon and energy sources. Thermophilic and hydrogenotrophic Methanothermobacter spp. have been recognized as robust biocatalysts for a circular carbon economy and are now applied in power-to-gas technology. Here, we generated the first manually curated genome-scale metabolic reconstruction for three Methanothermobacter spp.. We investigated differences in the growth performance of three wild-type strains and one genetically engineered strain in two independent chemostat bioreactor experiments. In the first experiment, with molecular hydrogen and carbon dioxide, we found the highest methane production rate for Methanothermobacter thermautotrophicus delta H, while Methanothermobacter marburgensis Marburg reached the highest biomass growth rate. Systems biology investigations, including implementing a pan-model that contains combined reactions from all three microbes, allowed us to perform an interspecies comparison. This comparison enabled us to identify crucial differences in formate anabolism. In the second experiment, with sodium formate, we found stable growth with an M. thermautotrophicus delta H plasmid-carrying strain with similar performance parameters compared to wild-type Methanothermobacter thermautotrophicus Z-245. Our findings reveal that formate anabolism influences the diversion of carbon to biomass and methane with implications for biotechnological applications of Methanothermobacter spp. in power-to-gas technology and for chemical production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.