Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.DOI: http://dx.doi.org/10.7554/eLife.28360.001
Depletion of Ca(2+) from the endoplasmic reticulum (ER) results in activation of plasma membrane Ca(2+) entry channels. This 'store-operated' process requires translocation of a transmembrane ER Ca(2+) sensor protein, stromal interaction molecule 1 (STIM1), to sites closely apposed to Ca(2+) channels at the cell surface. However, it is not known whether a reduction in Ca(2+) stores is coupled to other signalling pathways by this mechanism. We found that lowering the concentration of free Ca(2+) in the ER, independently of the cytosolic Ca(2+) concentration, also led to recruitment of adenylyl cyclases. This resulted in enhanced cAMP accumulation and PKA activation, measured using FRET-based cAMP indicators. Translocation of STIM1 was required for efficient coupling of ER Ca(2+) depletion to adenylyl cyclase activity. We propose the existence of a pathway (store-operated cAMP signalling or SOcAMPS) in which the content of internal Ca(2+) stores is directly connected to cAMP signalling through a process that involves STIM1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.